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Abstract
Spraying pesticides is a key element of agriculture worldwide, since 30% to 35% of crop losses

can be prevented when harmful insects and diseases are eliminated by applying pesticides. Site-

specific spraying can help reduce pesticide application; however, target detection is limited due to

the complex agricultural environment. This paper presents a human-robot collaborative sprayer

designed for site-specific targeted spraying. The robotic sprayer platform, the framework, and

tools for the robotic sprayer to collaborate with a remote human operator for the target detec-

tion and spraying tasks are detailed. An experiment to evaluate the elements of the collaborative

human-robot framework working in sync was designed, implemented, and evaluated. The collab-

orative spraying system shows a 50% reduction of sprayed material. The experiment also proves

the feasibility of human-robot collaboration for the complex task of spraying specific targets con-

sidering both the True Positive (TP) and False Positive (FP) rates.
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1 INTRODUCTION

Application of nutrients, fungicides, and pesticides is one of the most

important processes in agricultural production, and it can have a sig-

nificant impact on crop yield, quality, and ultimately profitability.1 It

is estimated that approximately 30%–35% of crop losses can be pre-

vented when harmful insects and diseases are eliminated by applying

pesticides.2

Current methods for pesticide application include a human opera-

tor traveling along the crop rows and selectively spraying the targets

manually using a backpack sprayer (Fig. 1, left), but a more commonly

used method is mechanized nonselective spraying in which a human

drives a tractor with a sprayer connected to the tractor that sprays the

crops continuously (Fig. 1, right). Despite the use of pesticide protec-

tion equipment (a personal head mask and a central filtration system

for the manual and mechanized spraying methods, respectively), the

human is still exposed to hazardous pesticides that can cause negative

health issues.3

Robotic technology canprovide away to reduce the quantity of pes-

ticide applied, improve its sustainability, and reduce its environmen-

tal impact.4 A target-specific robotic sprayer can reduce the quantity

of pesticides applied in modern agriculture and potentially remove or

minimize the human presence during the pesticide spraying process.5

Studies show that up to 60% of pesticide use can be reduced when the

sprayingmaterial is targeted toward the designated object.6–8

Agricultural robots have been developed for many operations,

such as field cultivation, planting, spraying, pruning, and selective

F IGURE 1 Pesticide spraying methods. Backpack sprayer (left)
where the human carries the pesticide and sprays each target manu-
ally, and tractor sprayer (right) where the human drives a tractor with
spraying equipment

harvesting.9–11 A comprehensive review of the state-of-the-art har-

vesting robots for high-value crops12 identifies three sources of

variation in a crop environment that must be considered in the devel-

opment of a harvesting robot: objects, environment, and crops.

Robotic systems for spraying in agriculture have been developed

for plant protection applications, for weeding, and other similar tasks.

A robotic weed control system that mechanically cuts a targetedweed

while applying a minute amount of chemical to the cut surface of the

weed has been developed.13 Although the robotic system showed

great potential in site-specific weed management, there is still a gap

in the development of a commercial robot. A review on autonomous

robotic weed control systems4 describes the current status of the

four core technologies (guidance, detection and identification, preci-

sion in-row weed control, and mapping) required for the successful
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development of a general-purpose robotic system for weed control.

The authors conclude that while a few complete robotic weed control

systemshavedemonstrated the potential of the technology in thefield,

additional research and development is needed to fully realize this

potential. A scaled-down prototype consisting of a visually controlled

robotic arm that guides the jet of a mounted sprayer directly toward

date clusters completely autonomously and from a short distance14

presents a great way to extract the human operator from hazardous

environments such as pesticides.

The two core tasks for agricultural spraying robots are sensing—

for target detection, and “robotics”—for the spray execution.15 In this

work, a fully operational robotic sprayer integrating both tasks into an

operational system is demonstrated. To ensure a simple system design,

a single RGB camera was used for the sensing, and a fully operational

robotic platformwas used for the robotic part.

Extensive work has been conducted on object detection in complex

agricultural environments,16 but detection rates in real-world condi-

tions remain limited to a90%truepositive (TP) rate andareoftenmuch

lower.12,16–18 The limited performance is caused by the complicated

agricultural conditions15,16,18 due to the high variability of the agri-

cultural objects (i.e., color, texture, orientation), their amorphous size

and shape, and the unstructured and dynamic environmental condi-

tions (e.g., changing illumination directions, shading, and targets occlu-

sion). Recent work19 showed a 95% TP rate for detecting red grape

clusters, but with an artificial white screen as a background (to avoid

confounding effects from the background vegetation); it is reasonable

to assume that the TP rate performance of these algorithmswill be dif-

ferent under real-world conditions and for green grapes. According to

previous work,20 in order for the robot to be economically feasible it

must be able to detect and spraymore than95%of the targets success-

fully.

Unlike robotic sprayers, humans can easily adapt to such changing

environments due to their high perception skills. By taking advantage

of human perception skills and incorporating them with the robot’s

accuracy and consistency, a combined human-robotic system can be

simplified and result in improved performance.21,22 Human-robot col-

laboration has been proven to improve detection and reduce cycle

time.23 A teleoperated system for navigating a crawler robotic vehi-

cle along predefined paths with two modes of control—direct and

supervisory—was developed.24 Results indicated that direct control

was difficult for the operator due to the high delay time between the

operator command and the robotic response. The supervisory mode

showed the ability to travel straight with a maximum lateral error of

0.3m. Recent work25 performed in parallel to this research focused on

human-robot interaction aspects as applied to a teleoperated system.

The research provided design principles for developing a teleoperated

user interface for an agricultural sprayer26,27 basedon a focused litera-

ture review, and it involved the collection of robot teleoperation inter-

face design guidelines, user-centeredmethods, and field experience.

To improve robotic targeted spraying, a human-robot collabo-

rative sprayer has been developed.28 It includes several levels of

collaboration based on Sheridan’s 10 levels of collaboration.29 The

human-robot collaborative sprayer presented in this paper integrates

all modules necessary for site-specific spraying: target detection

algorithms, target marking techniques,30 a remote interface for

human-robot collaboration,31 collaboration levels between the human

and the robot,32 and an adjustable diameter spraying device.33 The

proposed human-robot collaborative framework focuses on the main

taskofdetectingand spraying targets,with theaim to increaseTP rate

and reduce false positives (FPs).

Most agricultural robotics research to date focused only on TP

rates.12 It is known that there is a tradeoff between TP and FP rates.34

Furthermore, an increased number of FPs leads to increased cycle

times and wasted spray material. Hence, it is important to ensure a

decrease of FP rates while increasing the TP rate.

The motivation for the proposed system was to remove the human

from the hazardous pesticide environment and to reduce the use of

pesticides by minimizing the quantity of sprayed material (minimizing

FPs) while maintaining the crop yield (maximizing TP rate). A robotic

sprayer platform was designed and built to serve as a research tool

for investigating methods and devices designated for the agricultural

domain in general and specifically for vineyards operations. A human-

robot framework for the target detection task was designed, imple-

mented, and evaluated. This included a user interface and communi-

cation infrastructure developed to enable a remote operator to com-

municate and collaboratewith the remote robot. Thefield experiments

conductedandpresented in this paperprovide insights on the full oper-

ation of a human-robot collaborative system operating in the agricul-

tural domain.

2 HUMAN-ROBOT FRAMEWORK

2.1 Overview

The human and the robot work collaboratively to detect artificial tar-

gets (Fig. 9) in a sequential mode as described in the workflow dia-

gram presented in Figure 2. A target detection algorithm is operated

on images acquired in the field by the robotic platform. The frame-

work poses the human at a remote location equipped with a target-

marking device (e.g., a stationary computer, laptop, tablet, PDA, or

smart phone), and it uses the human’s excellent perception skills to

mark targets on images captured by the robot in the field. Depending

on the collaboration level (described below), the human canmark addi-

tional targets and/or erase targets detected by the imaging algorithm.

Themarked targets are then sent back to the robot for actual spraying.

Two different marking methods are proposed, implemented, and eval-

uated.

2.2 Human target-marking

Two marking methods were implemented based on results from pre-

vious work:30 Marking method I—Constant Diameter Circle (CDC): the

operator sets the center of a preset constant diameter circle, and by

clicking the left button on themouse, the circle is marked on the image

(Fig. 3, upper left). Using this method, the operator cannot change the

circle diameter. Marking method II—Free-hand marking: the operator

clicks the left button on the mouse (without release) and surrounds
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F IGURE 2 Human-robot collaboration workflow diagram. The flow
diagram presents the task allocation between the robot in the field
and the remote human operator (collaboration levels 2, 3, and 4 are
described in Section 2.3)

the target area. When releasing the mouse button, the area bounded

is marked as a target (Fig. 3, upper right). In each method, the area

bounded within the marked area is considered as “detected” and col-

ored in red.While using each of themarkingmethods, the operator can

use the right button on the mouse to erase a marked target. The eras-

ingmethod is identical to themarkingmethod (e.g.,whenusing theCDC

method, the operator can click the right button on the mouse and the

target markedwithin that area will be erased).

When the target marking process is completed (due to marking all

the targets or at the end of the marking time for the image), a binary

image is produced for the robot indicating the targets to be sprayed

(Fig. 3, lower left and right).

2.3 Human-robot collaboration

The human-robot collaborative target detection task was defined so

as to ensure a high TP rate and a low FP rate. The human’s task was

to assist the robot with the target detection, and the robot’s task was

to detect targets and perform the actual spraying procedure. Four lev-

els of human-robot collaboration were developed based on Sheridan’s

10 levels of human-robot collaboration29 and on previous simulation

analyses,35 which evaluated the adaptation of these levels for target

recognition. The levels are sorted by increasing robot autonomy along-

side decreasing human supervision.

Collaboration level 1: fully manual human target marking. A raw

image from the field is sent directly to the remotely located human

operator. The operator’s task is tomark the targets in the imagewithin

the time limitation. All targets marked by the operator are sprayed.

F IGURE 3 Markingmethods.CDC (upper left), free-hand (upper right),CDC result (lower left), and free-hand result (lower right). The targets to be
marked are the grape clusters
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F IGURE 4 User interface for the remote human operator

Collaboration level 2: robot suggests, human approves. The image

captured in the field is processed by the robotic target detection algo-

rithm. Detected objects are considered as recommendations for the

human operator and are colored in a partially transparent blue hue.

After the robot detection process, the marked image is sent to the

operator. The human operator must mark each target he/she wants to

spray. The operator can use the robot-recommended areas in order to

achieve an enhanced target TP rate. All areas to be sprayed must be

marked by the human.

Collaboration level 3: robotmarks, human supervises. The captured

image from the field is processed by the robotic target detection algo-

rithm. These marked areas are considered target areas that should be

sprayed and are colored with a partially transparent red hue, exactly

like the human marking color. After the robot detection process, the

marked image is sent to the human. The human operator can add,

change, and erase the robot’s markings. If the human does not make

any change in the robot-marked image, all the robot-marked areas will

be considered targets andwill be sprayed.

Collaboration level 4: fully autonomous robot marking. This collab-

oration level is thehighest according toSheridan,29 inwhich thehuman

does not have a part in the target detection process. The robot detects

the target and accordingly the sprayer is directed toward each object.

2.4 User interface design

The main goal of the interface is to present the human with images

captured by the robot in the field. Using one of the suggested marking

methods, the human marks targets within the image; the images are

presented to the user within a constant time frame that corresponds

to the advancing speed of the sprayer along the field.

The interface (Fig. 4), consisting of a singlewindow inwhich the user

can mark the targets according to the preselected marking method,

was designed using Microsoft Visual Studio IDE (C#) under the Win-

dows 7 operating system. The interface includes two indicators for the

user. The first indicator is the time left formarking the current image in

the form of a slide bar located at the bottom of the interface. The sec-

ond indicator is a button located at the upper right corner of the inter-

face, which is used to establish a remote connection with the robot.

The default background color of the button is gray. When the button

is pressed, the background color changes to orange, indicating that the

server is running and waiting for communication from the robot (the

robot is considered a client). Once the robot is ready for the spraying

process, it initiates communicationwith the interface.When communi-

cation between the remote interface and the robot in the field is estab-

lished, the button background color changes to red.

3 THE ROBOT

A robotic platform was designed and built to serve as a research tool

for investigating methods and devices designated for the agricultural

domain in general and specifically for vineyard operations.28 Detect-

ing and spraying the grape clusters was the main agricultural task.

The robot was designed to include all the necessary equipment, hard-

ware, and software required to accomplish autonomous and semiau-

tonomous (human-assisted) field tasks such as navigation along the

vineyard row and spraying accurately toward the target area.

The robotic chassis (Fig. 5, left) is assembled from two identical plat-

forms that are interconnected using a two-degree-of-freedom (2DOF)

universal joint (Cardan joint). ThefirstDOF is used to improve the turn-

ing radius, and the second allows the platform designers to neglect

the need for a complicated suspension system. Although the robot is

capable of turning using differential steering, allowing a relative angle

between the platforms contributes to a smaller turning radius and

minimizes side slip of the wheels, resulting in reduced wear of the

vehicle and less ground trace. The platform payload is designed for

300 kg. A modular approach is taken with four identical wheel mod-

ules. Eachwheelmodule consists of the following: an ATVwheel (0.5m
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F IGURE 5 Robotic sprayer. CAD drawing of two identical platforms interconnected using a 2DOF universial joint and wheel unit (upper left),
complete robotic sprayerwith all of themain components andperipherial accessories attached (upper right), robotic sprayer electric power scheme
(lower left), and a focused ASD imagewithin the overall robotic sprayer (lower right)

diameter), a wheel shoulder that connects the wheel to the platform,

anda24V–480Welectricmotor. Theelectricmotor is fixed to theplat-

form and connected to the wheel using chain wheels. Using incremen-

tal encoders connected to each wheel, the wheel position and speed

can be controlled using a developed kinematic model.28,36

The robot is equipped with an electrical box that is mounted to the

front platform and contains the following: a PC with an i7 processor, a

7-in. touch screen, two electric motor controllers (Roboteq AX3500),

and some small peripheral aids (e.g., Arduino boards and a step motor

controller).Other equipment ismounted to theplatform, including two

color cameras (Microsoft LifeCam Studio) (one facing forward for nav-

igation and the second facing sideways for target detection), two 12 V

110A/h car batteries, a 2500W (Geko 2801) power generator, and a

commercial sprayer (a 200 L tank with an internal combustion engine

connected to a liquid pressure pump). A gamepad controller (Microsoft

Xbox 360) is connected wirelessly to the robot platform and used for

manual maneuvering of the robotic platform.

The robot uses a fanless spraying design in order to minimize the

spraying drift and to achieve highly accurate spraying. It must be noted

that agronomy experiments are necessary to validate the sprayer effi-

ciency.

An adjustable spraying device (ASD; Fig. 5, lower right, and

Fig. 6) was developed using a single nozzle (AYHSS 16) to enable

accurate spraying of the agricultural target.33 The developed device

was designed to implement the one target–one shot (OTOS) spraying

method, which was designed to cover the entire target by adjusting

the spray diameter to the minimum possible closing circle diameter

with a single spray.37 The core of the ASD contains three elements:

a spraying nozzle, a step motor interconnected to the nozzle, and a

camera. Based on the size of the targets detected on the image cap-

tured from the camera, the step motor changes the nozzle diameter

and performs a single spray using an electric valve.33 The ASD was

mounted to a pan-tilt unit (PTU) that directs the nozzle toward the

target.

The operational concept of the ASD presented in Figures 6 and7

is described in detail in Ref. 33. An image is captured using the ASD

mounted camera (Microsoft Studio with 600 × 800 resolution). Using

machine vision algorithms (such as the one in Ref. 38), the center-of-

mass location and the closing circle diameter of each target are calcu-

lated. Using the PTU, theASDnozzle is directed toward the target cen-

ter of mass; using a stepper motor, the nozzle aperture and the spray-

ing diameter are adjusted. An electric valve controls the opening and

closing of the spray.

4 INTEGRATIVE SITE-SPECIFIC SPRAYER

EXPERIMENT

4.1 Overview

An experiment was designed to evaluate the human-robot collab-

oration framework for the site-specific target spraying task, focus-

ing on the integrative performance of the three main components of

the collaboration framework that were previously tested and eval-

uated separately: human marking methods,30 levels of human-robot

collaboration,32 and the spraying device.33 For simplification and bet-

ter control and evaluation, artificial targetswere set in an artificial out-

door environment. The human-robot task was to spray the targets as
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F IGURE 6 Adjustable spraying device. CAD view of the ASD (upper left), front view of the ASDmounted to a PTU (upper right), and side view of
the ASD (lowermiddle)

accurately as possible, within a limited time frame that corresponded

to the sprayer speed as it advanced along the row. To simulate real-

world conditions, the human operator was located at Ben-Gurion Uni-

versity of the Negev, Beer-Sheva, Israel, 90 km south of the robotic

platform, which was located at Beit-Dagan, Israel.

4.2 Robot side

To focus on the target detection/spraying tasks, the robotic platform

was programmed to autonomously follow a red base line (a red plastic

strip of 50 mm width) that was fixed at a 1.6 m distance in parallel to

the target’s base (Fig. 8, left). During each step, the robot travels 1m to

completely change the current frame point of view (POV). The robot’s

travel speed was set to 0.2 m/s. The ASD was mounted to the robot,

perpendicular to the robot’s travel direction, facing the target’s base

(Fig. 8). Fifty targets were randomly spread along an 18-m-long path

andwere set at least 20 cm apart, imitating grape clusters.

Although the robotic sprayer was designed for spraying grape

clusters,38 in this experiment artificial custom targets specifically

designed for the experiment were used. The use of artificial targets

enabled precise detection of the targets and high target detection

repetitiveness, which was essential for comparing the different exper-

iment repetitions, users, marking methods, and collaboration levels.

Another advantage of using artificial targets is that the TP and FP rates

could be controlled, unlike the unstructured grape cluster scene.

The targets were constructed from blue polyethylene plastic and

were hand-cut according to four shape patterns as shown in Figure 9.

To be as close as possible to commercial field conditions, the experi-

ment included predefined TP and FP rates. Two types of targets were

used: 38 targets that can be detected by the robotic sprayer (targets

with a red circle in themiddle of the target; Fig. 10, left), and 12 targets

that cannot be detected by the robotic sprayer (targets with a yellow

circle in themiddle of the target; Fig. 10, right).

An artificial target detection algorithm was developed specifically

for detecting the artificial targets and the color of the circle in themid-

dle (red for robot-detectable and yellow for targets not detected). The

target detection algorithmwas based on simple color thresholding and

was implemented using Matlab software equipped with an image pro-

cessing toolbox. The algorithm is based on isolating the blue target in

the image (the background of the image is the target base, which is

white in color) and identifying the color of the circle midtarget.

Since artificial targets are being used in this experiment, the arti-

ficial target detection algorithm can reach a 100% TP rate and close

to zero FP. To match vineyard field conditions, a FP area was added

to the detected target surroundings. The predefined FPs were added

using theMatlab image processing tool. Themathematicalmorphology

operation Dilation was used to expand the computer-detected target

(Fig. 11). Since each of the captured images is unique in the sense of dif-

ferent numbers of targets, target orientation, and position, the added

FP area is different for each image. The FP rate was set between 10%
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F IGURE 7 Flowchart of the ASDworking procedure

F IGURE 8 Robotic platform following red stripe. Experimental scheme including the robotic platform and target base (left) and photograph of
the robotic platform during experiment (right)

and 20% according to the FP results evaluated in Ref. 38 in field condi-

tions with an average FP of 17.3% (with a standard deviation of 5.5).

Using the ASD, the targets were sprayed with red water-soluble

food dye (Florma red 696). Each target was sprayed for 1 s, and imme-

diately after the spraying operation stopped, an image of the spraywas

captured and saved.

The communication between the robot and the remote human was

basedon theTCP-IPprotocol. The robotobtained internet accessusing

a smart phone Hot Spot (4G LTE with random switching to 3G). The

remote human computerwas connected to a high-speed academic net-

work (Ben-Gurion University of the Negev Internet) with a maximum

rate of 1 Gbit/s.



8 BERENSTEIN AND EDAN

F IGURE 9 Four artificial target templates. The targets were hand-cut to obtain amorphous shapes

F IGURE 10 Target groups, detectable by the robot target (red circle
in the center) (left) and undetectable by the robot target (yellow circle
in the center) (right)

4.3 Human task

The human task was to mark the target area using one of the mark-

ing methods and one of the suggested human-robot collaborations

describedabove. Thehumanusedadesk computer equippedwith a21-

in. screen (Fig. 12). Each user was trained before the experiment with

20 images according to the training rate evaluated in Ref. 30.

4.4 Spray evaluation

The spraying quality was evaluated using four methods:

1. Marking comparison: comparison between the targets that exist in

the image (Fig. 14, upper left, upper right, and lower left colored in

red) and themarkedareas (humanand robot) (Fig. 14, lower left col-

ored in green). The performancemeasures were TP and FP rates.

2. Spraying comparison: comparison between the targets that exist in

the image (Fig. 14, upper left, upper right, and lower right colored in

red) and the theoretically sprayedareas (Fig. 14, lower right colored

in green). The performancemeasures were TP and FP rates.

3. Qualitative evaluation: analysis of the sprayed target (Fig. 13). Each

sprayed target image was presented to an expert and was graded

on a 1–5 scale (Fig. 13). The performancemeasure was TP rate.

4. Spraying material estimation: an estimation of the quantity of spray-

ing material used (representing pesticides) was conducted based

on the ASD development results.33 In the estimation, the quantity

of liquid that was used in each of the spraying experiments above

is compared to a simulated experiment of the robot continuously

driving along the targets’ base with three open nozzles (similar to

the traditional spraying method; Fig. 1, right). By multiplying the

number of sprays (e.g., Table 2) with the duration of each spray (1 s)

and the ASD flow-rate (0.05329 l/s), the quantity of liquid was cal-

culated for each of the four collaboration methods. The liquid esti-

mationof continuous sprayingwasbasedon thequantity of sprayed

material when three nozzles are open constantly, where each noz-

zle spray diameter was 0.33 m and the robot speed was 0.33 m/s

(the corresponding speed to expose the target for 1 s of spraying).

4.5 Experimental design

Twenty male and female students aged 25–40 participated in the

experiments and were divided into two groups, one for each marking

method (CDC and Free-hand). Each participant practiced the three col-

laboration levels. For each collaboration level, the robot traveled a sin-

gle time along the target base with steps of 1 m. The image switching

timewas set to 12 s.

For the fourth collaboration level (autonomous) the robot per-

formed 10 repetitions, in each of which the robot traveled along the

target’s base with 1 m intervals, captured the target’s frame, analyzed

the captured frame using the artificial target detection algorithm, and

sprayed toward each of the detected targets.

F IGURE 11 Target detection and FP results. Original captured image (left), detected target (middle), and detected target with added FP (right)
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5 RESULTS AND DISCUSSION

The experimental results are summarized in Figure 15, Figure 16, and

Table 1, where the graph bars “marking comparison—TP” and “marking

comparison—FP” represent the TP andFP rates, respectively, using the

Marking comparison spray evaluation; the bars “spraying comparison—

TP” and “spraying comparison—FP” represent the TP and FP rates,

respectively, using the Spraying comparison spray evaluation; and the

"qualitative evaluation" bar represents the TP rate using the Qualita-

tive evaluation spray evaluation, as described in Section 4.4. For ease

of comparison, Figures 15 and 16 also present results of collaboration

level 4, which are identical in both figures.

The overall performance of the Free-handmarking method was bet-

ter than the CDCmarking method [t(7), p<0.005] by 2.8% on average.

TP rate was improved for all cases [t(7), p<0.005] when using the Free-

handmarkingmethod (except for the qualitative evaluation in collabora-

tion level 2). However, along with the improvement of the TP rate, the

FP rate increased by 4.5% on average, implying more wasted spraying

material. In both marking methods, the TP and the FP rates increase

F IGURE 12 Human marking targets using a remote computer in
Beer-Sheva, Israel, 90 km south of the robot

when transforming from collaboration level 2 to level 3 [t(7), p<0.05].

The best TP rate results (91.3% on Marking comparison and 93.6% on

Spraying comparison) were achieved when using the Free-hand mark-

ing method with collaboration level 3. Best minimization of FPs was

achieved for the CDCmarking method, while using collaboration level

1 (3.8% onMarking comparison and 10.1% on Spraying comparisonwith

F IGURE 13 Target spraying evaluation scale 5 (outstanding)→ 1 (poor)

F IGURE 14 Spray evaluation while using the CDC marking method with the third collaboration level. Captured image from the spraying site
(upper left), computer detected (for the spray evaluation both the red and yellow midtarget circles were calculated) (upper right), comparison
between the human and robot marked areas colored green, and the computer-detected targets in the image colored red (lower left), and compar-
ison between the theoretical sprayed areas while using the ASE colored green and the computer-detected targets in the image colored red (lower
right)
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F IGURE 15 Experimental results for the CDCmarkingmethod

F IGURE 16 Experimental results for the free-handmarkingmethod

standard deviations of 1.8 and 3.3, respectively). However, in this case

the TP rate was 77.6%.

Another important parameter to be considered for actual imple-

mentation is the number of sprays (Table 2). The number of sprays also

represents the number of detected targets sprayed where each target

is sprayed once. Since the number of targets in each repetition was 50,

we can see that some false spraying occurs in all the repetitions. One

of the reasons that the number of sprays is higher while using the Free-

handmarkingmethod is due to themarking procedure. For future com-

mercial use, we recommend filtering out small objects in the marked

image, which should not be considered as targets to be sprayed due to

their small size.

During the experiment, the robot traveled a total distance of 1,044

m (16 users × 3 repetitions per user × 18 m for each repetition + 10

repetitions × 18 m for each repetition), captured 1,108 frames, and

sprayed 3,378 targets. The experiment shows that collaboration of

a human in the spraying process is feasible and improves the spray-

ing process. Collaboration between the remote robot and the human

resulted in improved TP and FP rates (TP rate increased by 13.4% and

FP rate decreased by 19.5% with statistical significance at p<0.05),

compared to a fully autonomous operation (collaboration level 4).

The spraying material estimation analyses (Table 3) revealed that in

each of the collaboration levels and marking methods, the decrease in

spraying liquid is more than 50%. Table 3 shows that while the robot

operated in autonomous mode, the average liquid used was less than

in the CDC and free-hand marking methods (for all collaboration lev-

els), although the FPs of the autonomous level were the highest (Table

1). This low liquid level can be explained by the number of detectable

and undetectable targets (Fig. 10) combined with the fact that while

operating autonomously, the robotdoesnotdetect and spray theunde-

tectable targets. Additional evidence of this is the number of sprays the

robot applied in each collaboration level (Table 2).

6 CONCLUSIONS

This research presented a collaborative human-robot framework

for site-specific spraying of grape cluster targets. An experiment to

evaluate the elements of the collaborative human-robot framework

TABLE 1 Summary of results

Markingmethod
Collaboration
method

Averagemarking
comparison – TP
(%) (std)

Averagemarking
comparison – FA
(%) (std)

Average spraying
comparison – TP
(%) (std)

Average spraying
comparison – FA
(%) (std)

Average qualitative
evaluation – TP (std)

CDC 1 77.6 (10.1) 3.8 (1.8) 83.1 (9.8) 10.1 (3.3) 4 (0.3)

2 81.1 (5) 6.4 (2.6) 85.3 (5.1) 14.5 (3.5) 4.1 (0.3)

3 85.4 (5) 18.9 (8.4) 87.9 (4) 33.7 (11) 3.8 (0.4)

Free hand 1 79.3 (8.5) 4.6 (3.6) 87 (5.4) 12.4 (7.9) 4 (0.3)

2 81.9 (9.9) 6.8 (5.4) 89.5 (5.6) 15.2 (9.6) 4 (0.3)

3 91.3 (6.6) 31.4 (4.9) 93.6 (5.1) 49.6 (11.2) 4.2 (0.3)

None 4 69.4 (19.7) 31.5 (14.6) 69.5 (19.7) 42.1 (38.6) 4.4 (0.7)

TABLE 2 Number of sprays

Number of sprays (std)

Markingmethod Collaboration 1 Collaboration 2 Collaboration 3 Collaboration 4

CDC 57.5 (6.2) 55.0 (5.9) 67.0 (7.2) 41.3 (1.9)

Free hand 64.4 (6.9) 66.4 (7.1) 60.4 (6.5)
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TABLE 3 Sprayingmaterial usage estimation

CDC Free hand Autonomous

Collaboration level 1 2 3 1 2 3 4 Continuous driving

Liquid use (l) 3.06 2.93 3.57 3.43 3.54 3.22 2.20 8.72

Liquid reduction
compared to
continuous driving
(%)

64.86 66.39 59.06 60.66 59.44 63.10 74.76

working in sync was designed, implemented, and evaluated. The

experiment proves the feasibility of human-robot collaboration for the

complex task of targeted spraying considering both TP and FP rates.

The collaborative spraying system reduces the quantity of sprayed

material by 50%,which has both economic and environmental impacts.

Results obtained can be used to implement a human-robot oper-

ational system by deciding on the best target marking method and

collaboration level according to the selected criterion. For example,

if TP rate is prioritized, full manual collaboration should be employed

with a CDCmarking method. To achieve the lowest FP rate, collabora-

tion level 2 should be employed using the free-hand marking method.

This is important since in the spraying task the selected criterion can

change throughout the season depending on pests and environmental

and growing conditions. For example, when there is a high risk of dan-

gerous pests, it is more important to ensure high coverage of targets

(maximize TP rate) thanwastedmaterial (FPs).When risks are low, the

farmer prefers to limit spray material as much as possible (minimize

FPs).

It must be noted that spraying evaluation in this paper focused

on the human collaboration aspects for target detection (specifically

on the marking method and collaboration levels). Future work should

focus on evaluating spraying performance for different spraying char-

acteristics (e.g., droplet size, droplet spread, and spraying materials)

for specific crops, pests, and pesticides. Additionally, human-robot col-

laboration for other tasks can be developed and incorporated into the

site-specific sprayer (e.g., navigation along the row, trimming). In this

research, timing issues such as robot driving speed, marking time, and

time for the ASD to spray each target were not optimized; these can

be improved and will yield increased robot productivity. Additional

future work can concentrate on improving the human remote percep-

tion by adding advanced sensors (e.g., stereo vision, 3D cameras, and

a combination of RGB and LIDAR) and evaluating the robotic sprayer

performance in real-world conditions. It must be noted that if sen-

sors are added, efficient design methods must be employed to display

the sensed information so as to maximize information display while

minimizing distraction. Hence this is an area recommended for future

research.

The remote interface for the human operator was designed with

great simplicity under the assumption that a supervisor is present

during the experiments. An advanced remote human interface can

be developed in future work. We suggest that such an interface be

implemented on aweb platform to allow human control from different

devices, such as smart phones, hand-held computers, tablets, and lap-

tops. Another subject for future work related to the interface design

can be the evaluation of different pointing devices such as a touch

screen, a 3D mouse, and a digital pen, and their effect on the human

marking performance. This is similar towhat was investigated recently

by Adamides25 for teleoperation tasks.

Future work can also focus on the image switching time and try to

determine the optimal time for best target marking. This can include a

comparison of constant switching times compared to switching times

that are set by the user when he/she completes themarking task.

Withminor adaptations, the human-robot collaborative framework

can be easily used with other agricultural applications, such as fruit

picking, yield and disease monitoring, and field exploration. For full

robot operation, crop-specific target detection (e.g., Ref. 38) and navi-

gation algorithms (e.g., Ref. 39)must be integrated. The framework can

also beused in other commercial applications that require complex tar-

get detection, such as border control and hazardous material environ-

ment.

ACKNOWLEDGMENTS

This researchwas supported byHelmsleyCharitable Trust through the

Agricultural, Biological and Cognitive Robotics Initiative, and by the

Rabbi W. Gunther Plaut Chair in Manufacturing Engineering, both at

Ben-Gurion University of the Negev.

REFERENCES

1. Singh S, Burks TF, Lee WS. Autonomous robotic vehicle development

for greenhouse spraying. Trans ASAE. 2005;48(6):2355–2361.

2. Cho SI, Ki NH. Autonomous speed sprayer guidance using machine

vision and fuzzy logic. Trans ASAE. 1999;42(4):1137–1144.

3. Swan SH, Kruse RL, Liu F, et al. Semen quality in relation to

biomarkers of pesticide exposure. Environ Health Perspectives.
2003;111(12):1478–1484.

4. Slaughter D, Giles D, Downey D. Autonomous robotic weed control

systems: A review. Comput Electron Agricult. 2008;61(1):63–78.

5. Lee WS, Slaughter D, Giles D. Robotic weed control system for toma-

toes. Precision Agricult. 1999;1(1):95–113.

6. Elkabetz P, Edan Y, Grinstein A, et al. Simulation model for evaluation

of site-specific sprayer design. Paper presented at the ASAE Annual

InternationalMeeting, Orlando, FL; 1998.

7. Gil E, Escol A, Rosell JR, et al. Variable rate application of plant pro-

tection products in vineyard using ultrasonic sensors. Crop Protection.
2007;26(8):1287–1297.

8. Goudy HJ, Bennett KA, Brown RB, et al. Evaluation of site-specific

weed management using a direct-injection sprayer. Weed Science.
2001;49(3):359–366.

9. Edan Y, KondoN, Shufeng H. Automation in agriculture. In: Nof SY, ed.

Handbook of Automation. Berlin: Springer-Verlag; 2009:1092–1128



12 BERENSTEIN AND EDAN

10. NishiwakiK,AmahaK,OtaniR.Developmentof nozzle positioning sys-

tem for precision sprayer. Paper presented at theAutomationTechnol-

ogy for Off-Road Equipment, Kyoto, Japan; 2004.

11. Oberti R, Marchi M, Tirelli P, et al. Selective spraying of grapevines

for disease control using a modular agricultural robot. Biosyst Eng.
2016;146:203–215.

12. BacCW,Henten EJ, Hemming J, et al. Harvesting robots for high-value

crops: State-of-the-art review and challenges ahead. J Field Robotics.
2014;31(6):888–911.

13. Jeon HY, Tian LF, Grift T. Development of an individual weed treat-

ment system using a robotic arm. Paper presented at the ASABE

Annual InternationalMeeting, Tampa, FL;2005.

14. ShapiroA,Korkidi E,DemriA, et al. Towardelevated agrobotics:Devel-

opment of a scaled-down prototype for visually guided date palm tree

sprayer. J Field Robotics. 2009;26(6):572–590.

15. Song Y, SunH, LiM, et al. Technology application of smart spray in agri-

culture: A review. Intell Autom Soft Comput. 2015;21(3):319–333.

16. Kapach K, Barnea E, Mairon R, et al. Computer vision for fruit harvest-

ing robots—State of the art and challenges ahead. Int J Computat Vision
Robotics. 2012;3(1):4–34.

17. Gongal A, Amatya S, Karkee M, et al. Sensors and systems for

fruit detection and localization: A review. Comput Electron Agricult.
2015;116:8–19.

18. Jimenez A, Ceres R, Pons J. A survey of computer vision methods for

locating fruit on trees. Trans ASAE. 2000;43(6):1911–1920.

19. Correa C, Valero C, Barreiro P, et al. Feature extraction on vineyard

by Gustafson Kessel Fcm and K-means. Paper presented at the 16th

IEEE Mediterranean Electrotechnical Conference (MELECON), Yas-

mine Hammamet, Tunisia; 2012.

20. BlackmoreS,HaveH, Fountas S.A specificationof behavioural require-

ments for an autonomous tractor. Paper presented at the 6th Interna-

tional Symposium on Fruit, Potsdam, Germany; 2001.

21. Fong T, Thorpe C. Vehicle teleoperation interfaces. Auton Robots.
2001;11(1):9–18.

22. RodriguezG,WeisbinCR.Anewmethod to evaluate human-robot sys-

tem oerformance. Auton Robots. 2003;14(2):165–178.

23. Bechar A, Edan Y. Human-robot collaboration for improved tar-

get recognition of agricultural robots. Indust Robot. 2003;30(5):432–
436.

24. Murakami N, Ito A, Will JD, et al. Development of a teleoperation sys-

tem for agricultural vehicles. Comput Electron Agricult. 2008;63(1):81–
88.

25. Adamides G. User interfaces for human-robot interaction: Application on
a semi-autonomous agricultural robot sprayer. Ph.D. thesis, Open Uni-

versity of Cyprus, Information and Communications Systems, Nicosia,

Cyprus; 2016.

26. Adamides G, Christou G, Katsanos C, et al. Usability guidelines for the

design of robot teleoperation: A taxonomy. IEEE Trans Human-Machine
Syst. 2015;45(2):256–262.

27. Adamides G, Katsanos C, Christou G, et al. Human-robot interaction

in agriculture: Usability evaluation of three input devices for spraying

grape clusters. Paper presentedat theSustainableAgriculture through

ICT Innovation (EFITA-WCCA-CIGR), Turin, Italy; 2013.

28. Berenstein R. A human-robot cooperative vineyard selective sprayer.
Unpublished Ph.D. thesis, Ben-Gurion University of the Negev, Indus-

trial Engineering andManagement, Beer-Sheva, Israel; 2016.

29. Sheridan TB. Telerobotics, Automation, and Human Supervisory Control.
Cambridge,MA: TheMIT Press; 1992.

30. Berenstein R, Edan, Y. Evaluation of marking techniques for a human-

robot selective vineyard sprayer. Paper presented at the International

ConferenceofAgricultural Engineering (CIGR-AgEng), Valencia, Spain;

2012a.

31. Berenstein R, Edan Y, Ben Halevi I. A remote interface for a human-

robot cooperative vineyard sprayer. Paper presented at the Interna-

tional Society of Precision Agriculture (ICPA), Indianapolis, IN; 2012.

32. Berenstein R, Edan Y. Human-robot cooperative precision spraying:

Collaboration levels and optimization function. Paper presented at

the Symposiums on Robot Control (SYROCO), Dubrovnik, Croatia;

2012b.

33. Berenstein R, Edan, Y. Automatic adjustable spraying device for

site-specific agricultural application. IEEE Trans Autom Sci Eng.
2017;PP(99):1–10.

34. Vitzrabin E, Edan, Y. Changing task objectives for improved sweet

pepper detection for robotic harvesting. IEEE Robotics Autom Lett.
2016;1(1):578–584.

35. Oren Y, Bechar A, Edan Y. Performance analysis of a human-robot Col-

laborative target recognition system. Robotica. 2012;30:813–826.

36. Zaidner G, Shapiro AA. Novel data fusion algorithm for low-cost local-

isation and navigation of autonomous vineyard sprayer robots. Biosyst
Eng. 2016;146:133–148.

37. Berenstein R, Edan Y. Robotic precision spraying methods. Paper pre-

sented at the ASABEAnnual InternationalMeeting, Dallas, TX; 2012c.

38. BerensteinR, ShaharOB, ShapiroA, et al.Grape clusters, foliagedetec-

tion algorithms for autonomous selective vineyard sprayer. Intell Serv
Robotics. 2010;3(4):233–243.

39. Rovira-Más F, Millot C, Sáiz-Rubio V. Navigation strategies for a vine-

yard robot. ASABEAnnual InternationalMeeting. Orleans, LA; 2015.

SUPPORTING INFORMATION

Additional Supporting Informationmay be found online in the support-

ing information tab for this article.

How to cite this article: Berenstein R, Edan Y. Human-robot

collaborative site-specific sprayer. J Field Robotics. 2017;00:1–

12. https://doi.org/10.1002/rob.21730

https://doi.org/10.1002/rob.21730



