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Abstract: Image registration is the process of aligning two or more images of the same scene 

taken at different times; from different viewpoints; and/or by different sensors. This research 

focuses on developing a practical method for automatic image registration for agricultural 

systems that use multimodal sensory systems and operate in natural environments. While 

not limited to any particular modalities; here we focus on systems with visual and thermal 

sensory inputs. Our approach is based on pre-calibrating a distance-dependent 

transformation matrix (DDTM) between the sensors; and representing it in a compact way 

by regressing the distance-dependent coefficients as distance-dependent functions. The 

DDTM is measured by calculating a projective transformation matrix for varying distances 

between the sensors and possible targets. To do so we designed a unique experimental setup 

including unique Artificial Control Points (ACPs) and their detection algorithms for the two 

sensors. We demonstrate the utility of our approach using different experiments and 

evaluation criteria. 
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1. Introduction 

Implementing accurate, selective and economical agricultural robots for various agricultural and 

horticultural tasks is one of the main goals of precision agriculture (see Table 1). A critical task within 

this field is the detection of natural objects, a particularly difficult challenge due to the inherent 

unconstrained environments and the significant variability in all object properties such as color, shape, 

size, texture, and reflectance properties. Moreover, the highly unstructured scenes are often characterized 

by large degree of uncertainty, changing illumination and shadow conditions, and severe occlusions. 

Combined with the sheer complexity of the typical unstructured agricultural scene, it is clear why this 

domain is considered one of the ultimate challenges of sensory systems, machine vision systems in 

particular [1]. 

State-of-the-art fruit detection systems commonly combine several detection sensors and algorithms 

using sensor fusion techniques to achieve better detection rates (Table 1). Often, the detection module 

constitutes a single RGB camera combined with one or more complementary sensors such as thermal, 

infra-red, laser scanner, hyper-spectral, or time of flight (see Table 1 for many examples). To do so 

successfully, the first mandatory step in fusing the data from the different sensors is the registration of 

their images. This registration is the focus of our work. While nothing in our approach is tailored to any 

particular sensor modalities, our case study is the combination of visual and thermal sensors. Indeed, 

how fruit detection rates can be improved by fusing these particular sensors compared to each of them 

alone was already demonstrated in the past, for example for the detection of oranges [2]. 

Thermal imaging allows for finding fruit whose color, potentially an indicative cue, is very sensitive 

to illumination conditions. Leaves, unlike fruits, accumulate less heat and emit it for a shorter time. 

However, since the thermal response is sensitive to the sunlight illumination and heat accumulation, fruit 

on different parts of the tree might respond differently [1–3]. In such cases combining thermal and RGB 

imaging could be useful for fruit detection and harvesting, under the assumption that a suitable 

registration procedure is provided. 

Table 1. Examples of various precision agriculture topics of research in the last three decades. 

Task Sensors Description of Research Reference 

Target 
detection 

RGB, spectral survey on fruit detection using computer vision [4] 
RGB camera detection of grape clusters [5] 

Thermal vision detection of oranges using thermal imagery [6] 

RGB camera + thermal camera 
detection of oranges using RGB camera and 
thermal camera and conducting fusion between 

[2] 
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Table 1. Cont. 

Task Sensors Description of Research Reference 

Precision 
spraying 

RGB camera 
selective sprayer for weed control using machine 
vision, real time controller and controllable 
spraying system 

[7] 

CCD camera 
developed a tree crown recognition and smart 
spraying system 

[8] 

BW camera + ultrasonic 
speed spraying using fuzzy logic control of 
machine vision and ultrasonic sensors 

[9] 

Ultrasonic spraying robot for vine production [10] 

Robotic 
harvesting 

Stereo vision apple harvester robot [11] 
Color camera (HSV) robot for greenhouse operations [12] 

Color camera apple harvester robot [13] 
2 wavelengths of  

color camera 
strawberry harvester robot [14] 

Image registration is the process of overlaying (i.e., transforming into the same coordinate system) 

two or more images of the same scene taken at different times, from different viewpoints, and/or by 

different sensors [15]. Registration processes are usually divided into the following steps: (i) Feature 

detection—detects (manually or automatically) the position of distinctive objects in the image,  

also known as Control Points (CPs). While such features are often the starting point for the registration 

process [16–19], in many cases they are replaced with pixel patches that provide distinct  

appearance [20–22]; (ii) Feature matching—establishes correspondence between the CPs of the different 

sensors. For example, in Figure 1 we may wish to correspond the yellow disk in the visual image with the 

left most point in the thermal image; (iii) Transformation model estimation—determines the type of 

image transformation according to prior information (or lack thereof) regarding the acquisition process; 

(iv) Image transformation—transforms the two images into a common coordinate system (often by 

transforming one into the other). 

 

Figure 1. Same scene acquired by different sensors. (a) Image from RGB camera;  

(b) Image from thermal camera. 

Applying automatic image registration for systems that use visual and thermal images is difficult due 

to the different methods employed to calculate the CPs for each type of sensor and the lack of natural 
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correspondence between their CPs [23]. Most papers dealing with visual and thermal image fusion and 

registration [23,24] perform this correspondence manually (i.e., use a human to mark corresponding CPs 

in the visual and thermal images). One exception is Istenic et al. [25] who presented an automatic method 

for visual and thermal image registration. Their approach uses edge detection and Hough transform to 

detect linear lines in both images and to compute CPs for the registration process. However, since this 

approach is based on straight linear segments, it is limited only to images that consist of objects with 

straight lines [25], which are not prevailing in the unstructured agriculture environment, another method 

must be developed. Introducing landmarks manually for thermal and visible image registration proved 

successful for aligning static medical images [26,27] and for fruit registration (e.g., [2]). 

Among the mentioned papers [23,24,26,27] require manual CP selection. The procedure for  

Istenic et al. [25] is automatic, however their scenes were much more structured. 

The goal of this work is to introduce a new approach for highly accurate registration of thermal and 

color images. 

The novelty of the manuscript is that it offers a new registration method suitable for unstructured 

environments with long intervals of sensing ranges. It introduces a new approach for highly accurate 

registration of thermal and color images. The registration approach is based on the computation of a 

“dynamic” transformation matrix (TM) in which each element is a function of the distance from the 

object in the image. In the field this distance can be measured by a range sensor. In this paper, we 

demonstrate the utility of our approach on a robotic sprayer equipped with an RGB and thermal camera, 

as well as a laser scanner. Within the interval, the method offers compact representation of multiple  

(or infinite, if one considers the continuous range) registration transformations. Thanks to the regression 

algorithm, the procedure permits registration at distances for which the sensors were not calibrated for. 

For completeness we also present the ACP design and algorithm for ACP detection, although this is not 

the core of the paper. 

2. Methods 

2.1. Image Registration Model 

The core of the registration process is to find TM that transforms pixels in one image to the  

other. Formally, 
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where x' and y' is the registered pixel coordinates and x, y is the original pixel coordinates. To be general 

enough, here we assume that the transformation between the multimodal images is projective, an eight 

DOF (Degree Of Freedom) mapping which contributes to the registration accuracy [28]. 

The projective transformation is a 3 × 3 homogeneous matrix (TM). Since it has eight DOFs, a linear 

system of rank eight is required in order to determine the value for each of the TM elements. Each CP 

(identified by its two coordinates) can contribute two constraints by applying Equation (1) and 

rearranging as follows 
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By repeating this procedure with at least four CP, a full linear system can be created and solved in 

order to determine the values of the TM. 
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Four CPs is the minimum required to solve the projective transformation matrix (TM) but using more 

CPs can provide resistance to noise and contribute to the registration accuracy. In this case the system 

in Equation (3) becomes overdetermined and its least squares optimal solution can be found with singular 

value decomposition (SVD). 

The TM just described provides the registration between two given images, but cannot align arbitrary 

two images captured in the field where CPs are not available in real time. For this we expand the process 

to support image pairs of arbitrarily distant objects via pre-calibrated registration. The base of this 

approach is the Distance Dependent Transformation Matrix (DDTM) (TM(D))—A TM that depends on 

distance D. We construct this matrix function as follows 

(i) Capture a scene with varying distances between the sensors and the CPs, 

(ii) Calculate the TM for each scene with its corresponding distance, 

(iii) Construct a collection of all the TM calculated (Figure 2), 

(iv) Collect the corresponding values from each element of each matrix, use them as samples of a 

distance-dependent function, and perform a regression R with these samples to obtain a functional 

representation of the element 

( )( ) ( )),(),(2),(1, )(,...,)(,)(DDTM nmznmnmnm DTMDTMDTMRD =  (4)

where m and n are the row and column indices of the TM respectively, 

(v) Collect all functions to construct the DDTM. 

 

Figure 2. TM collection. 
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Using Equation (1) while defining the TM component as the newly defined DDTM (Equation (5)), each 

new pixel’s coordinates will be calculated according to its distance D (which is assumed measured). 
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The above equation is the core of a very compact registration of thermal and RGB camera images 

depending on the distance, which will be in our case measured with a laser scanner. 

2.2. Target Rail and Sensor Position 

The experimental system included two main elements: sensor array (Figure 3a) and a circular rail 

with mobile rail-cart (Figure 3b). The sensor array contained three sensors, including a RGB camera 

(Flea2 FL2-08S2C with resolution of 768 × 1032 and 45° wide angle lens, acquisition frequency 30 FPR), a 

thermal camera (Flir T425 with resolution of 240 × 320 and 45° IR wide angle lens, acquisition 

frequency 9 FPR), and a laser scanner (Sick LMS111 with scanning angle of 270° and resolution of 0.5°, 

scanning frequency 50 Hz). The sensors were mounted to the sprayer disabling any relative movement 

among sensors during all experiments. The second experimental element is a circular rail  

(width 6.4 m/length 2.4 m) with a mobile rail-cart (Figure 3b) able to move along the rail line. The  

rail-cart position/velocity can be controlled manually or by using an AC electric motor with frequency 

inverter regulation. Several types of targets can be fixed on top of the rail-cart such as artificial targets 

or real-world target (live trees). Data from all three sensors was acquired simultaneously using a personal 

computer and stored for post analysis. 

 

Figure 3. Selective sprayer. (a) sensors array; (b) overall sprayer with rail (red square, 

sprayer sensors). 

2.3. Artificial Control Points 

To construct the DDTM, the collection of TMs that register a preconfigured pair of sensors had to be 

derived from experimental data. To do so, a unique type of artificial control point (ACP) was designed 

with the goal to be easily detected by the two sensors, the RGB camera and the thermal camera. Each of 

our ACPs is composed of two elements, a colored disk (120 mm diameter) with 10 W incandescent light 

bulb fixed at the disk center (Figure 4a,c). The= disks were colored differently to provide better 

visualization. While not used here, in future applications these different colors can be used to associate 
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unique identities to the markers in order to facilitate more elaborate inference about the spatial 

organization of the ACPs. 

In order to calculate a reliable DDTM in a real world scene, eight ACPs were mounted to a flat plate 

(1 × 1 m) as shown in Figure 4b. The plate dimensions and the ACPs arrangement within the plate were 

chosen such that at the minimum operational distance between the plate and the sensors array  

(170 cm) the ACPs will cover most of the image area and provide maximal sensitivity in their position. 

In order to evaluate the DDTM, the ACPs flat plate was mounted to the rail-cart with the ability to move 

while the plate remains perpendicular to the sensors array (Figure 4d). 

 

Figure 4. ACPs (a) single target with an incandescent light bulb in the middle; (b) ACPs 

setup; (c) ACPs mounting plate; (d) DDTM evaluation setup. 

The colored disk detection algorithm was designed to detect and localize the ACPs in the color image 

and is based on commonly used machine vision procedures. The algorithm was implemented using 

Matlab software and Matlab image processing toolbox and was based on color thresholding (according 

to the specific disk). Figure 5 shows the detection of three blue disks in the image, but the algorithm is 

easily modified according to the desired target color. More specifically, the algorithm works as follows: 

(i) Capture input RGB image (Figure 5a), 

(ii) Convert the RGB image to HSV representation and isolate the hue and saturation channels 

(Figure 5b,d where (b) is the Hue and (d) is the saturation), 

(iii) Threshold the hue and the saturation (thresholds were set according to the detected color)  

(Figure 5c,e), 

(iv) Merge (logical OR) the resulted binary images (step iii, Figure 5f), 

(v) Isolate the ACPs plate using the RGB image (Figure 5g) (the ACPs plate is brighter relative to 

the environment and by applying threshold on the R,G,B channels the ACPs plate can be 

identified and isolate), 

(vi) Unite the binary ACP plate (Figure 5g) with the binary image resulted in step iv (Figure 5f), 
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(vii) Remove small clusters (<500) of pixels that considered as noise (using Matlab command 

bwareaopen) (Figure 5i), 

(viii)  Fill holes in the image using morphological operations (using Matlab command imfill) (Figure 5j), 

(ix) Apply erosion followed by dilation using disk mask (r = 15 pixel) (Figure 5k). Using the disk 

shape mask, this step helps to remove small, non-ellipse shapes, 

(x) Filter remaining identification errors by searching saturated pixels in the shape center (expected 

due to the light bulb) (Figure 5l). 

The detection of ACPs in the thermal images, i.e., the detection of the light bulbs, followed the 

following steps: 

(i) Capture a thermal image, 

(ii) Threshold the image for high temperature values, 

(iii) Remove small clusters (<10) of pixels that considered as noise (using Matlab command bwareaopen), 

(iv) Apply erosion followed by dilation using disk mask (r = 5). Using the disk shape mask, this step 

helps to remove small, non-ellipse shapes. 

 

Figure 5. Blue colored disk detection algorithm. 

The ACP position in the visual and thermal image was calculated as the center of mass of each  

ACP position (Figure 6). 
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Figure 6. (a) visual image; (b) RGB ACPs positions, (c) RGB ACPs position; (d) thermal 

image; (e) thermal ACPs position; (f) ACPs position; (c,f) are sorted according to Figure 4b. 

2.4. ACP Analysis 

To validate the ACPs detection algorithms, we compared their detected locations with ground truth 

position marked by a human operator on a set of 192 points (24 random images, eight points in each 

image). The distance dRGB pixels, between the automatically and manually marked ACPs was considered 

as the detection error and calculated by the standard Euclidean formula 

( ) ( )
( ) ( )

2 2

2 2

RGB RGB M RGB RGB M RGB

Thermal Thermal M Thermal Thermal M Thermal

d x x y y

d x x y y

= − − −

= − − −
 (6)

where dRGB is the distance in pixels, xRGB and yRGB are the automatically calculated horizontal and vertical 

coordinates of the visual image respectively, xM RGB and yM RGB are the manually marked horizontal and 

vertical coordinates of the visual image respectively, xThermal and yThermal are the automatically calculated 

horizontal and vertical coordinates of the thermal image respectively, xM Thermal and yMThermal are the 

manually marked horizontal and vertical coordinates of the thermal image respectively. Since the visual 

and thermal cameras have different resolutions, a normalization correction was added according to 

Equation (7). Needless to say, these constants require adjustment for other cameras and lenses. 
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( ) ( )
2 2

1032 768

320 240RGB Thermal M Thermal Thermal M Thermald x x y y
   = − ⋅ − − ⋅   
   

 (7)

Lens distortions play an important role in the registration procedure. Although distortion can be 

irregular or follow many patterns, the most commonly encountered distortions are approximately 

radially symmetric, arising from the symmetry of a photographic lens. This is true for both thermal and 

visual light lenses. However, results summarized later in Table 3 show that these were not very large 

and that in accordance h20 and h21 were close to zero. 

Table 2 shows that the average error between the automatically and manually marked ACPs is  

1.36 pixel and 0.87 pixel for the visual and the thermal image respectively. Comparison between the 

ACPs detection algorithms shows that the color disk detection algorithm is more accurate than the 

thermal detection algorithm (for this comparison, normalized thermal data is used). 

Table 2. Error comparison between manual and automatically ACPs detection. 

Sensor 
Average Standard Deviation 

pixel pixel 

RGB 1.36 0.88 
Thermal 0.87 0.32 

Thermal (normalized) 2.7 1.03 

3. Experimental Evaluation 

With the approach outlined above, experimental evaluation was performed in three steps. First, we 

constructed the DDTM using measured data. Second, we evaluated the constructed DDTM under 

easy\simple conditions. Evaluation of performance in real-world conditions is described in the third step 

which measures performance for different vibrations (pulling tractor, wind) and target registration of 

oblique objects. 

3.1. Experiment 1: Estimation of the DDTM 

The first experiment goal was to create the DDTM(D). Note that this computation is needed for each 

multimodal sensory configuration and can be considered as its calibration. Doing so requires sampling 

of corresponding ACPs, solving their TMs from several distances and then performing regression on the 

numerical results (as described in Section 2.1). 

In order to calculate the DDTM(D) in our experiment, a set of 51 scenes were captured from each 

distance and was used for better estimation of the ACPs position. The 51 scenes were captured 

sequentially during time frame of ~5.5 s. The scenes were captured by varying the distances between the 

sensor array and the ACPs plate from 1700 to 3000 mm with intervals of 50 mm resulting in a total of 

27 distances, 408 ACPs for each distance, and a total of 1377 images which contributed to the DDTM 

estimation. These distances were selected because they correspond well to the operational distances of 

the specific sprayer system we used for evaluation. Each captured scene includes a single visual image 

from the RGB camera, a single thermal image, and a single laser scan that includes the plate surface. 
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According to the suggested model in Section 2.1, a linear regression was used on each of the TM 

elements (Figures 7 and 8 and Table 3). The linear equations of h00, h01, h10, h11, h20 and h21 were 

approximated to a constant value (the second linear coefficient) since the slope coefficient was extremely 

small (Table 3), i.e., only h02 and h21 were affected by the distance between the plate and the sensor 

array. The DDTM(D) calculated for our particular sensor array was therefore presented as follows: 
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where D mm is the distance between the sensors array and the target for which registration is performed. 

 

Figure 7. DDTM elements (h00, h10, h20, h01, h11, h21). 

 

Figure 8. DDTM elements (h02, h12). 
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Table 3. DDTM regression summary for the sensor configuration used in our experiment. 

( , ) ( )m nDDTM D Regression Result Approximation as Constant 

h00 f(D) = 2.15E−06·D + 3.72E−01 0.3729 
h01 f(D) = 1.06E−06·D − 1.41E−02 −0.014085 
h02 f(D) = −0.012784·D − 16.110487  
h10 f(D) = −1.44E−06·D − 2.54E−02 0.025381 
h11 f(D) = 2.44E−06·D − 3.63E−01 0.363118 
h12 f(D) = −0.000845·D − 17.503239  
h20 f(D) = −5.56E−09·D + 9.00E−05 0.000090 
h21 f(D) = 3.71E−09·D − 1.45E−05 −0.000014 

Equation (8) and the results summarized in Table 3 indicate that h20 and h21 are close to zero which 

suggests that the resulting DDTM is an affine TM type with the following shape: 

0 1T

A t
affine TM

 
=  
 

 (9)

where A is a 2 × 2 matrix responsible for the rotation and deformation and t responsible for the  

translation [29]. A elements in Equation (9) can be decomposed and pose as: 

( ) ( ) ( )A R R DR= θ −ϕ ϕ  (10)

where R(Ɵ) and R(Φ) are rotation by Ɵ and deformation by Φ, and D is a diagonal scaling matrix: 

1

2

0

0
D

λ 
=  λ 

 

If the two cameras were perfectly aligned in parallel (horizontal and vertical) then Ɵ and Φ values 

would be zeros, resulting in: 

1

2

0

0
A D

λ 
= =  λ 

 (11)

and the values of λ1 and λ2 would be the cameras resolution ratios, 

1

2

320
0.31

1032
240

0.3125
768

λ = =

λ = =
 

But since our sensors also sustained minor misalignment setup (as expected in any field setup), the Ɵ 

and Φ are not zeros and the results of A are DDTM elements (h00, h01, h10, h11). 

The translation elements (h02 and h12) are linear as shown in the following: 

Consider the rectified setup shown in Figure 9, where two cameras are horizontally aligned and the 

distance between their centers (a.k.a. the baseline) is d. The thermal and color cameras horizontal fields 

of view are α1 and α2, respectively. The distance between the cameras and the target is D. In order to 

horizontally translate (tH) the left pixel of the color camera (Figure 9 blue circle) to the corresponding 

left of the thermal camera, the following should be calculated: 
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and since α1 and α2 are constants, tH is linear. The vertical translation can be shown to be linear in the 

same calculation procedure. 

 

Figure 9. Horizontal translation example. 

3.2. Experiment 2: DDTM Evaluation, Straight Vertical Plane 

Once the DDTM was determined as shown above, we next evaluated it for registration of controlled 

measured data. In this experiment the ACPs will change their designation and be used as image 

registration validation points. The ACP RGB coordinate will be mapped to the thermal image. Ideally, 

by applying the registration, the mapped RGB coordinates should align with the thermal coordinates, 

while any difference will be considered as a registration error calculated using: 

( )

( )
2 2

559
'

559
'

e C T
D

e C T
D

e e e

x x x
RP

y y y
RP

d x y

= − ⋅

= − ⋅

= +

 

where xe and ye are the errors in x and y coordinates of the registered color image (x'C, yC') to the thermal 

image (xT, yT), de is the distance error and RPD is the pixel distance between the red CPs in the thermal 

image. The error is normalized to millimeter units by multiplying the registration error by the physical 

distance between CPs 1 and 6 in Figure 4b 
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divided by the pixel distance between CPs 1 and 6 detected in the thermal image. 

To run the evaluation, we acquired new sets of images of the visual and thermal ACPs at each of the 

distances used above (i.e., 1700 to 3000 mm with 50 mm intervals between). After acquisition, the visual 

ACPs were mapped to the thermal ACPs using the DDTM(D) instances. For each distance,  

51 scenes were captured. The registration error was calculated for each CPs in the capture scene  

(51 scenes for each distance) for each of the distances (1700~3000). 

Registration error evaluation (Figure 10) reveals that while considering the error in terms of pixels, 

the error remains close to constant value ([0, –2] for x, [–2, –3] for y and [3, 5] for the distance error) 

but when considering the error in terms of physical distance mm the error increases with the distance from 

the target (D). The maximum registration error was no more than 3–5 pixels when using the DDTM(D). 

 

Figure 10. Registration errors while applaying DDTM. 

3.3. Experiment 3: DDTM Evaluation, Oblique ACPs Plane and Sensor Vibration 

The objectives of the third experiment were to simulate more realistic sensory scenarios. We first 

examined performance when each image pixel is mapped according to the specific distance from the 

sensors. Second, we evaluated the registration performance while applying vibrations to the sensors unit, 

a condition imitating the vibrations that a pulling tractor would impose when driving and pulling the 

sprayer on uneven ground. 

The experimental setup included two flat plates connected at 45° (Figure 11a). Four ACPs were 

attached to each of the plates with a total of 8 ACPs (Figure 11b). The oblique plates were mounted to the 

rail-cart with the ability to move while the plates remain perpendicular to the sensors array. Figure 11c 

shows sample of the visual image captured from the RGB camera. 
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Figure 11. ACPs arrangement. (a) side view; (b) front view; (c) visual image. 

During each experiment, the sprayer was stationary, while the rail cart with ACPs moved 

perpendicular to the sprayer and sensing unit. Sensing unit vibrations were in the Cartesian space. During 

the experiment, many Eigen—frequencies of the sprayer, half—filled reservoir, modifications to the 

sprayer etc. resulted in different sprayer (including sensing equipment) vibration levels for each 

coordinate of Cartesian space and for each vibration frequency setting. Due to a variety of vibration 

modes and few operating points the vibrations are expressed as total acceleration as shown in Table 4. 

Table 4. Results of the third experiment. 

Vibration Frequency Hz 
(Swing Arm Rotation 

Frequency Hz) 

Acceleration 
g 

Number of
Captured 

Images 

Vertical Plane CP1, 
CP2, CP5, CP6 pixel 

Oblique PlaneCP3, 
CP4, CP7, CP8 pixel 

Mean 
Error 

Standard 
Deviation 

Mean 
Error 

Standard 
Deviation 

0 0 118 3.68 0.67 4.02 0.86 

2.18 0.011 118 3.34 0.79 4.18 1.20 

2.49 0.0577 118 3.29 0.72 4.42 1.21 

2.80 0.0595 118 3.38 0.62 3.62 0.98 

3.11 0.1117 118 3.07 0.70 3.81 1.04 

3.42 0.1941 118 3.38 0.84 3.89 1.19 

3.73 0.3467 118 4.07 1.33 4.19 1.51 

4.04 0.3252 118 3.91 1.23 4.11 1.43 

4.35 0.2433 118 3.45 0.87 3.72 1.32 

4.66 0.2596 118 3.74 1.10 3.76 1.13 

4.97 0.3575 118 3.55 0.96 4.20 1.33 

5.28 0.4519 118 3.68 0.88 4.13 1.20 

The vibrations were created using a frequency controlled AC electric motor with an eccentrically 

attached mass. The electric motor with its eccentrically attached mass was bolted to the sprayer’s sensor 

array. Induced vibrations caused the entire sprayer to shake. During this experiment, the sprayer tank 

was filled with 500 liters of water, simulating a typical load. Vibrations were measured using an 
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accelerometer sensor (Phidgets 1043 with an acquisition frequency of 100 Hz) mounted rigidly on the 

sensing equipment support arm. 

During the experiment, 12 electric motor rotational frequencies were evaluated, while the mass and 

its eccentric attached point remained fixed. The first frequency was set to zero (no vibration) and used 

as a reference to the vibration measurement. For each frequency, the rail-cart traveled from distance 

1700 to 3000 mm and back to 1700 mm along the rail while the scene was captured continuously during 

the movement. 

The mean registration error and the mean standard deviation were calculated for all test cases 

according to Table 4. 

Comparison between the different vibrations shows that the vibration has no effect on the DDTM 

performance. This can be explained by the high frame rate of the sensors (30 and 9 frames per second 

for the color and thermal camera respectively). 

4. Discussion and Conclusions 

We have developed and presented a practical method for registration of multimodal sensory rigs for 

agricultural tasks. Our approach is based on pre-calibrating a distance-dependent TM between the 

sensors, and representing it in a compact way by regressing the distance-dependent coefficients as 

distance-dependent functions. In our case these dependencies ended up linear, but more elaborate DDTM 

may be obtained in more complicated situations. 

Error evaluation of x and y coordinates show that while considering the registration error in the pixel 

space, the error remains relatively constant, but when considering the error in the Euclidean distance 

space the error increases with the distance between the sensors and the target. 

The registration method suggested was developed for use with a one dimensional distance sensor 

(laser scanner). The method can be easily extended for a two dimensional distance sensor (e.g., Kinect sensor, 

Time of Flight camera) and gain higher accuracy from using the known distance of each image pixel. 

While the presented approach was developed for an agricultural environment application, it can be 

applied to other applications that require registration of objects at varying distances. The method can be 

used to register images from all imaging sensors providing the sensors can detect common control points. 
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