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In-field grape cluster size assessment for vine yield estimation using
a mobile robot and a consumer level RGB-D camera

Polina Kurtser1, Ola Ringdahl2, Nati Rotstein3, Ron Berenstein4, Yael Edan3

Abstract—Current practice for vine yield estimation is based
on RGB cameras and has limited performance. In this paper
we present a method for outdoor vine yield estimation using a
consumer grade RGB-D camera mounted on a mobile robotic
platform. An algorithm for automatic grape cluster size esti-
mation using depth information is evaluated both in controlled
outdoor conditions and in commercial vineyard conditions. Ten
video scans (3 camera viewpoints with 2 different backgrounds
and 2 natural light conditions), acquired from a controlled
outdoor experiment and a commercial vineyard setup, are used
for analyses. The collected dataset (GRAPES3D) is released to the
public. A total of 4542 regions of 49 grape clusters were manually
labeled by a human annotator for comparison. Eight variations
of the algorithm are assessed, both for manually labeled and
auto-detected regions. The effect of viewpoint, presence of an
artificial background, and the human annotator are analyzed
using statistical tools. Results show 2.8-3.5 cm average error
for all acquired data and reveal the potential of using low-
cost commercial RGB-D cameras for improved robotic yield
estimation.

Index Terms—Field Robots, RGB-D Perception, Agricultural
Automation, Robotics in Agriculture and Forestry

I. INTRODUCTION

Y IELD estimation is of critical importance to vineyard
growers for optimizing growth, harvesting preparations,

crop shipment, storage scheduling, and marketing purposes.
Vineyard yield can be estimated from the average number of
clusters per vine and the average cluster weight [1]. Typically
yield estimation is performed manually by sampling part of the
vineyard and extrapolating to the rest of the vineyard [2]. Since
manual practice is labor intensive and expensive, the sampled
portion of the vineyard is very limited, yielding inaccurate
and biased yield estimation [2]. Automation of the procedure,
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Fig. 1. The Greenhouse Spraying Robot (GSR) mobile robot platform
equipped with an Intel Realsense D435 RGB-D sensor in a commercial
vineyard setup.

using remote sensing and mobile robots, introduces non in-
vasive methods that can cover larger portions of the vineyard
in timely manner leading to improved yield estimation. To
achieve this task, appropriate sensor selection and data driven
algorithm development are necessary.

A. Related work

Current efforts in automation of yield estimation include
autonomous mobile robots navigating through the vineyard
for monitoring larger portions of it [3], [4], [5]. The robot is
usually equipped with a RGB camera scanning the vineyard
for grape vines while moving along the rows. Detection is
complex due to the high variability in fruit sizes, shape, and
colors, high occlusion rates and varying illumination condi-
tions [6]. In some cases, depending on the fruit variety, the
lack of proper colour cues (e.g., distinguishing green grapes
from green foliage, [4]) further complicates the detection.
Nevertheless, detection algorithms that are based on color [3],
[4], [5], [7], shape [8] and texture [9] or a subset of these
three features [2] are continuously developed and enhanced
and show promising success rates (with 88% precision and
recall obtained for state-of-the-art DNN [10]), so detection
has become less of a prominent problem, but still has not
been fully solved.

Once a grape cluster is detected, yield estimation is pre-
dicted based on the number of detected clusters and number
of berries in a cluster [2], [10]. Detecting each single berry in
a cluster in a commercial vineyard setup is rather complex
due to light conditions and occlusion, and therefore some
publications [3], [11] suggest grape cluster area pixel count
as an alternative. Estimation based on berry count is prone to
errors [2] even for ideal berry detection, since berry size varies
significantly between varieties, growing conditions, and even
within the vineyard. Nevertheless, these measures are currently
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used in practice to estimate cluster weight since they are the
only ones possible to extract from solely visual RGB data.

Other measures considered by research groups for yield es-
timation include grape cluster volume, length, and width [11],
[12], [13]. These measures require depth data for real-world
size estimation. In their very recent work, Hacking et al. [11]
showed that vine yield estimation is more accurate when based
on cluster volume measured using RGB-D data, compared to
estimation based on cluster area measured using RGB data
only. However, the Kinect sensor, used in their experiments,
that performed very well in laboratory conditions failed to
provide sufficient accuracy in outdoor conditions. Therefore,
for realistic field scenarios, the authors stress the need for a
better RGB-D sensor. The lack of proper RGB-D sensors is
pointed out by several other research groups exploring RGB-
D usage in agricultural applications, e.g [14], [15], [16]. Due
to this limited performance, authors commonly limit their
applications to controlled indoor laboratory conditions [12],
[13], [17]. With the recent penetration of new affordable RGB-
D cameras operating relatively reliably in field conditions,
[15], [16] it is important to evaluate these sensors in the
agricultural and viticulture settings [10], [11], [15].

B. Our contributions
The contribution of this paper is threefold. First, we inves-

tigate the performance of state-of-the-art RGB-D cameras to
determine if sufficient for accurate grape cluster size estima-
tion in outdoor conditions. Secondly, we present a novel single
frame RGB-D algorithm for estimating grape cluster size. The
method is evaluated using several different sensor viewpoints
and different backgrounds that might influence the estimation
[18], [19], [20], in controlled outdoor and commercial vineyard
conditions.

As mentioned in the related work section, development of
an algorithm for detecting grape clusters is a well researched
complex problem, which is out of scope of this paper. Since
the problem has not been fully solved yet we chose not to
implement complex detection algorithms. Instead, we focused
on evaluating the influence of cluster detection accuracy on
the cluster size estimation. This was conducted by comparing
a basic unsupervised grape detection algorithm to manually
labeled clusters, which serve as the golden standard for cluster
detection.

Finally, the collected dataset (GRAPES3D1) is released to
the public. Real-world agriculture datasets are scarce and hard
to obtain, especially with a novel RGB-D sensor. This dataset
provides an important contribution to the research community,
which we believe can enhance future developments of percep-
tion algorithms in viticulture robotic applications. The data
includes RGB-D scans of grape clusters on real vine plants in
various conditions (more details in Sections II-A, III-A).

II. METHODS

A. Data collection
An Intel Realsense D435 depth camera (an RGB-D sensor

with reported promising outdoor performance [16]) was fixed

1https://sites.google.com/view/grapes3d/home

Fig. 2. Experimental setup with a black background including five vine plants.

to the front left corner of a Greenhouse Spraying Robot (GSR)
platform at 625 mm above ground level (Fig. 1). The Realsense
D435 has a FOV of 87◦(±3◦) × 58◦(±1◦) × 95◦(±3◦),
1280×720 active stereo depth resolution. The GSR platform
is a skid steer, 4-wheeled robotic platform designated for
greenhouse spraying purposes with a 160 kg payload and max
velocity of 2.5 m/s. The GSR is equipped with a NVIDIA
Jetson Nano computing unit, running ROS Melodic. The GSR
can be manually controlled using an Xbox controller, or
programmed to do autonomous tasks.

Two experiments were performed. The controlled outdoor
setup (Fig. 2) included 10 vine plants in pots that were placed
outdoors 0.5 meter apart. A total of 17 grape clusters harvested
from a commercial vineyard were placed on the vines (1-3
clusters on each vine with a higher amount of clusters on
the high foliage vines). The visibility of the clusters depends
on the acquisition angle. Therefore, they were placed in a
way to have an equal amount of hidden and visible clusters
from each sensor pose. The commercial vineyard setup (Fig.
1) included operation in a commercial vineyard in south Israel
at the end of the growing season (Nov. 2019, one week before
harvest) and represents a real-world environment. Two middle
lanes were selected (one facing the sun and one opposite to
the sun direction, at time of acquisition) with 5 randomly
selected plants scanned in each lane (8-19 grape clusters on
each vine). The plants were 1.5-2m apart from each other.
Distance between growing lanes is about 3.5m.

Ground truth measures were acquired for both experiments
by measuring the width and the length of the cluster at the
widest and longest points respectively with a caliper (Fig. 3).
In the controlled outdoor setup, the clusters were attached to
the stem in a free hanging form. In the commercial vineyard
setup the clusters were measured while on the stem, and an
additional measure of cluster depth was acquired by measuring
the widest point along the z axis. Since only the surface facing
the camera is detected in a single frame, only X and Y were
used in the algorithms.

In both experimental setups, the robot was moved manually
parallel to the plants at 1.5 meter distance while continu-
ously acquiring RGB-D images at 30 fps. In the controlled
outdoor setup six videos were acquired, 30-90 s each, from
three different viewpoints (left/front/right) with and without
background (Table I). In the left and right viewpoints the
camera was rotated 45◦ around the y axis. A background
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Fig. 3. Ground truth acquisition procedure. GGGGT includes two measures -
length and width of the grape cluster at the longest and widest points as
measured when the cluster is hanging free.

consisting of a black cover was hanged behind the plants
to investigate how an even background color and limited
depth influences performance. Figure 5 shows the influence
of having a background on both RGB and the point cloud
images. The different viewpoints were investigated to analyse
the RGB-D data sensitivity to the sensor pose.

In the commercial vineyard experiment four videos were
acquired, each between 45-80 s from two viewpoints (front
and right) for each of the two lanes. No background was used
in this setup.

B. Grape cluster detection and size estimation

The algorithm developed for grape cluster size estimation
from an RGB-D video stream consists of three major steps
(Fig. 4): 1) Pre-processing, 2) Automatic detection and manual
labeling of grape clusters, and 3) Estimation of grape cluster
size.

1) Pre-processing: In the pre-processing phase, every fifth
frame of the video is parsed into a point cloud (PC) and RGB
image using Intel’s Realsense Software Development Kit2 in
order to down sample the data for manual labeling purposes.
The extracted PCs are then visually reviewed to locate frames
in which the plant of interest is located at x = [-0.5, 0.5]. Each
chosen PC is then filtered to remove the background. This is
achieved by keeping points between 0.3 in 2m in z (depth) and
between -1 and 1m in x (right-left) based on to the placement
of the plants described in Section II-A. This pre-processing
results in a PC as presented in Fig. 5 (bottom).

Images acquired in the commercial vineyard experiment,
were found to be exceptionally dark and required an additional
pre-processing step of lighting correction to make it easier
for the annotator to find the clusters. The lighting correction
includes de-hazing of the inverted image according to the
method of Dong et al., [21], and the results are presented in
Figure 6.

2) Manual labeling and automatic detection: From the pre-
processed PCs, 3D regions of interest (ROIs) of grape clusters
are segmented. The process is a four step procedure: first,
a rough location ROIR of the grape cluster is found either
through manual labeling ROIMR (1) or through an automatic
detection algorithm ROIAR (2). The rough location is either

2https://github.com/IntelRealSense/librealsense

Fig. 4. Overall algorithm flowchart for estimating grape cluster size from a
recorded RGB-D sequence.

fined tuned directly or goes through another step that computes
ROICM based on the center of mass and radius of ROIR (3)
before being fed to the fine tuning step as ROI (4).

Manual labeling, rough location (ROIMR ): a human anno-
tator is presented with overview and closeup images of the
plants and the location of the attached clusters. Additionally,
the annotator is presented with an RGB image and a point
cloud PC of the scene (Fig. 5), as acquired by the robot.
The annotator is asked to draw a rectangle around a grape
cluster in a XY projection of the PC in RGB color space. By
including the points from the PC that correspond to the marked
2D region ROIMR is created. This procedure is repeated for
each extracted frame from the video. Thereby the annotator
gets temporal information about the clusters as well since they
move only slightly between frames.

Automatic detection, rough location (ROIAR ): The automatic
detection procedure includes 4 steps: (1) Filtering out un-
wanted objects based on spatial location; (2) Detecting cluster
and foliage based on color; (3) Extraction of clusters from
foliage; (4) Disregarding possible false positives by cluster
size. Since, as mentioned in the introduction, this paper does
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a) RGB w/o BG b) Point cloud w/o BG

c) RGB with BG d) Point cloud with BG

Fig. 5. Acquired RGB and point cloud with and w/o background (BG) using
an Intel Realsense D435 RGB-D camera for detection and labeling of grape
clusters.

a. b. c.

Fig. 6. Light correction of data obtained in the commercial vineyard setup.
(a) Original RGB, (b) Enhanced RGB, (c) Enhanced Point-cloud.

not aim to provide a new detection algorithm, the suggested
algorithm presented below, includes a number of parameter
values that are fitted to the gathered data. The parameters were
adjusted based on 5-10 randomly selected frames from the
dataset, and the location of objects in the scene as described
in the experimental setup (Figure 2).

Filtering out unwanted objects based on spatial location
was done by filtering the pre-processed PC to exclude the
pots and parts of the ground (Y<-0.3). Next, for detecting
areas that include only foliage and clusters, a color based K-
means clustering [22] is performed in the NDI color space.
The NDI color-space is superior to RGB for detection tasks
in agricultural and viticulture settings [7], [23]. Therefore, the
RGB channel of the filtered PC is transformed according to
Eq. 1.

N =
R−G
R+G

; D =
R−B
R+B

; I =
B −G
B +G

(1)

where N ,D,I ,R,G and B are the three channels of the NDI
and RGB color-spaces respectively. The three NDI channels
are used as the 3D features space fed into a K++ algorithm
[24], an improved version of the classical K-means imple-
mented in the default MATLAB function kmeans3, to segment
the point-cloud. For the controlled outdoor dataset a suitable
cluster is obtained by clustering the pointcloud into 5 clusters
and choosing the cluster with the centroid with largest N in
the NDI color space. The choice of highest N centroid allows
for objects with highest contrast of red and green (Eq. 1) to

3 https://se.mathworks.com/help/stats/kmeans.html#bues5gz

be chosen as the suitable cluster. Since in the gathered dataset,
the grape variety was of high contrast of red and green, these
clusters, and their close surrounding foliage were selected.
Once the suitable cluster is selected, the pre-processed PC
is filtered to include only the spatial points corresponding to
the chosen cluster.

Next, given that the cluster chosen includes foliage and
grapes only, an additional color clustering is performed, to
separate the grape cluster from the surrounding foliage. The
red grapes, as mentioned, are expected to have high N values,
but to discriminate them from the green leaves they are also
expected to have higher D values (contrast of red to blue).
Therefore, the step is similar to the one suggested above
and was performed through NDI based k-means clustering.
For the controlled outdoor dataset, best results were achieved
by clustering into 3 clusters and choosing the cluster(s) with
centroid values N > 0.2 and D > 0.2. By allowing multiple
clusters to be chosen, the algorithm provides freedom to join
together clusters wrongly split (in case too little foliage is
present in the region).

Finally, filtration of possible false positive small clusters is
done through clustering the point-cloud according to spatial
location. The color filtered PC is segmented into clusters,
with a minimum Euclidean distance of 0.01m between points
from different clusters. Clusters with less than 300 points are
disregarded. Each remaining cluster corresponds to ROIAR .

ROI from center of mass (ROICM ): consists of all points of
the pre-processed PC satisfying Eq. 2, derived from the center
of mass CM of ROIR (either ROIMR or ROIAR ). Optionally
this step can be skipped by feeding ROIR to the fine-tuning
step directly.

CMx −R < x < CMx +R
CMy −R < y < CMy +R
CMz −R < z < CMz +R

(2)

R is a constant radius of interest around the CM in which
the grape cluster is suspected to be. For the analysis in this
paper the value was selected as R = 0.15m (about double
the expected average radius of a grape cluster of the variety
chosen). Accuracy measures extracted from ROICM provide
insights into the robustness of the fine tuning step to the size
of the labeled or auto-detected region.

Fine tuning: Each ROI generated according to one of the
four aforementioned methods (ROIR or ROICM derived from
manual labeling or automatic detection) is then subject to a
fine tuning process, to segment the grape cluster based on
color and spatial cues.

The fine tuning step makes two assumptions: the ROI
consists of grapes and foliage only and the cluster containing
a grape is the largest in size. This leads to a fine tuning
procedure that resembles the second step of auto-detection -
separation of the grape cluster from the surrounding foliage.
The fine tuning is therefore redundant for ROIAR for the
current auto-detect algorithm, but is kept for the possibility to
substitute auto-detect with a window based grape detection,
as described in the introduction, and also for generalization of
the overall algorithm.
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a. b. c.

d. e. f.

g. h.

Fig. 7. Fine tuning. (a-c): controlled outdoor setup, (d-f): commercial vineyard
setup. The point clouds (a) and (d) are clustered by NDI into 3 groups (b and
e). The chosen clusters (cyan in (b), cyan and yellow in (e)) are clustered
spatially with minimum distance ≥ 0.01m, resulting in 4 clusters found
in (c) and 3 in (f). The largest cluster is classified as grape (cyan in (c),
blue in (f)). (g): N-D scatter for controlled outdoor setup, (h): D-I scatter for
commercial vineyard setup. Clusters colored according to clustering in (b)
and (e) respectively.

Fine tuning consists of color clustering by a K-means
clustering algorithm using the NDI color space with 3 clusters
(Fig. 7). As mentioned above, for the controlled outdoor setup
the cluster chosen as the one representing the grape cluster is
the one with centroid values N > 0.2 and D > 0.2 in the
NDI color space (Figure 7g). For the commercial vineyard
setup, due to the dominance of the blue color in the specific
grape color variety, the cluster chosen as the one representing
the grape cluster is the one with centroid values D < 0.2
and I > −0.05 (Eq. 1: higher blue contrast leads to lower D
values and higher I values, Figure 7h). If more than one cluster
satisfies these conditions, they are joined into a single cluster.
Then, spatial clustering takes place with a minimum Euclidean
distance of 0.01m between points from different clusters (Fig.
7). The cluster with the maximum number of points is chosen
to represent the grape cluster.

3) Estimation of grape cluster size: Several methods to
estimate the grape cluster size from the obtained ROI are
evaluated. All methods are based on fitting a geometrical
form to the ROI and then extracting measures from the fitted
geometrical object.

The Percentile bounding box fitting returns a bounding
box according to Algorithm 1. The percentile was chosen
empirically as α = 0.02 (i.e., the algorithm derives the 20th
and 80th percentile for the pointcloud’s x,y, and z values
respectively). The measures of grape size cluster include ĜGGE

and ĜGGD - the two largest edges and diagonals (representing X

and Y) of the fitted box respectively.

Algorithm 1 Percentile bounding box.
1: function GETBOUNDINGBOX(PtCloud, α)
2: (minX,maxX) ← Percentiles(PtCloud.X,α,1− α)
3: (minY,maxY ) ← Percentiles(PtCloud.Y,α,1− α)
4: (minZ,maxZ) ← Percentiles(PtCloud.Z,α,1− α)
5: B ← [minX maxX minY maxY minZ maxZ]
6: return B
7: end function

The Ellipsoid fitting method was inspired by [8] who fitted
ellipsoids for grape berries detection. The ellipsoid fitting is
implemented using Petrov’s4 function for fitting an ellipsoid,
sphere, paraboloid or hyperboloid to a surface. Important to
note, that the fitting is limited due to the single viewpoint
approach taken. The measure of grape size cluster is ĜGGR - the
two largest radii of the fitted ellipsoid.

The Cylinder fitting method fits a cylinder to the PC
using M-estimator SAmple Consensus (MSAC) algorithm [25]
implemented with MATLAB’s pcfitcylinder5 function. The
measure of grape size cluster is ĜGGC , the diameter and the
height of the fitted cylinder.

C. Analysis

The influence of viewpoints and the different variations of
the detection algorithm were evaluated as follows.

1) Accuracy compared to ground truth: Statistics on the
difference between the ground truth (GT) measures GGGGT and
each of the proposed estimation measures ĜGGE , ĜGGD, ĜGGR,
and ĜGGC (see Sec. II-B3) are provided. For each ROIR and
ROICM (auto-detected or manual), that went through the fine
tuning process, a measure of accuracy is defined as the average
absolute error, according to Eq. 3.

Errx = |ĜGGx −GGGGT |wwwe (3)

where ĜGGx is one of the estimation measure vectors ĜGGE ,
ĜGGD, ĜGGR, or ĜGGC , and wwwe is the weights given to the first
and second size measure. The error is reported in cm with
wwwe =

[
0.5 0.5

]′
.

2) Identifying sources of error: To evaluate the statistical
significance of the main sources of error Errx, an ANOVA
model is applied. The model accounts for the fixed effect
of cluster position (top/center/bottom), viewpoint (front/right),
and background presence (yes/no) and random effect of plant
number.

3) Detection results: To be able to compare the error
generated by the auto-detected label to the ground truth, a
process of pairing the detected labels and the manually marked
one was conducted. In this algorithm, an overlap between
auto-detected areas and labeled areas are calculated for each
frame. The regions with the highest overlap are considered a
"pair", implying the measures for the auto-detected area will
be compared to the ground truth associated with the labeled
cluster.

4https://ww2.mathworks.cn/matlabcentral/fileexchange/24693-ellipsoid-
fit?s_tid=FX_rc2_behav

5 https://se.mathworks.com/help/vision/ref/pcfitcylinder.html
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TABLE I
NUMBER OF ROIAR /ROIMR FOR DIFFERENT VIEWPOINTS (VP),
PRESENCE OF BACKGROUND (BG), AND CLUSTER POSITION FOR

CONTROLLED OUTDOOR SETUP.

Cluster position

BG VP Bottom Center Top

No
Left 44/74 16/23 27/32
Front 34/320 59/141 154/238
Right 18/382 119/183 95/206

Yes
Left 121/285 129/137 80/121
Front 73/542 98/197 185/211
Right 0/419 111/249 242/312

III. RESULTS

A. Description of the dataset acquired

In the controlled outdoor setup, all 17 clusters were iden-
tified by the human annotator and a total of 4072 manual
labels were collected (Table I). The difference in number
of labeled frames for different combinations of viewpoints
and background is due to the fact that each combination is
acquired in a separate session with the robot and therefore the
number of frames can vary slightly depending on robot speed
and distance to plants. Additionally, the annotators reported
that background made it easier to locate the cluster, which
explains the larger number of frames in the acquisitions with
background. Ground truth measurements of the 17 clusters
yielded an average grape cluster of 0.12m (±0.02) X 0.14m
(±0.02). In the commercial vineyard, the annotators were able
to identify 32 clusters, and 470 manual labels were marked.
Ground truth measurements of the identified clusters yielded
an average grape cluster of 0.14m (±0.05) X 0.10m (±0.04).
The labels and ground truth measures were then analyzed and
the following accuracy measures were extracted.

B. Estimation method accuracy compared to GT

For the controlled outdoor setup, accuracy measures of each
of the proposed methods are outlined in Table II. The results
reveal that the fitting method providing the best accuracy is the
diagonals of the percentile box ĜGGD (2.9 cm average absolute
error) with percentile box edges ĜGGE slightly behind (3.4 cm
average error). When manual detection was substituted with
the detection algorithm the average absolute error rises to 4.6-
4.9 cm suggesting the algorithm can benefit from a better
auto-detection algorithms than the one proposed (detection
rates in Table I). Manual labeling also showed significantly
lower standard deviation of absolute error ĜGGD as compared
to the the auto-detected areas (~2.8 cm compared to ~4.6
cm) and ĜGGE (~2.4 cm compared to ~3.4 cm). Estimation
based on ROICM compared to directly extracting from the
rough location ROIR showed very similar results, suggesting
the algorithm is robust to the size of the region detected or
labelled. Fitting of a cylinder and ellipsoid showed a great
number of outliers. Filtering detection with higher than 10
cm absolute error results reveal that the ellipsoid and cylinder
methods yield an average error of ~5.3 cm, however with a
large number of outliers (30-60%). Fitting a percentile box to

TABLE II
Errx FOR SIZE ESTIMATION METHODS IN CONTROLLED OUTDOOR SETUP:

AVERAGE ±STD CM (NO. OF ROIR KEPT POST-FILTER). NO. OF
UNFILTERED ROIMR : 4072, ROIAR : 1605.

Automatic Manual

ROIAR ROIACM ROIMR ROIMCM

Percentile
box diag.
ĜD

All 4.6 ±4.6 4.4 ±4.1 2.9 ±2.8 2.9 ±2.8
Filter 3.2 ±2.5

(1386)
3.3 ±2.5
(1402)

2.6 ±2.0
(3909)

2.6 ±2.0
(3913)

Percentile
box edges
ĜE

All 4.9 ±3.4 4.8 ±3.2 3.3 ±2.4 3.4 ±2.4
Filter 4.3 ±2.6

(1417)
4.3 ±2.6
(1434)

3.3 ±2.2
(4027)

3.3± 2.2
(4004)

Cylinder
diam. &
height ĜC

All 10.9 ±12.9 10.9 ±12.9 10.6 ±20.9 10.3 ±13.3
Filter 5.6 ±2.8

(570)
5.6 ±2.8
(570)

6.0 ±2.7
(1442)

6.0 ±2.6
(1471)

Ellipsoid
radii ĜR

All 22.0 ±134.8 19.9 ±97.1 25.2 ±329.9 25.7 ±408.7
Filter 5.4 ±2.7

(937)
5.4 ±2.7
(935)

5.3 ±2.7
(2705)

5.3 ±2.7
(2688)

manual labeling resulted with very little outliers (2-3%) with
edges being slightly more robust but slightly less accurate than
diagonals.

For the commercial vineyard setup, slightly higher error
was observed (3.6 ±3.0 cm for ĜGGE). ĜGGD showed significantly
weaker performance with 4.6 ±3.9 cm average error. To avoid
reporting misleading results affected mostly by the detection
algorithm performance, rather than the evaluated sensor or the
cluster size estimation algorithm, evaluation in the commercial
vineyard setup was performed only for the ROIMR . As defined
in the introduction, the detection algorithm presented is rather
simplistic and is not fitted for the highly occluded dataset
acquired at the end of the growing season.

Comparison of the grape cluster volume in vineyard condi-
tions, calculated by (ground truth) width x length x depth, to
the estimated volume acquired by multiplying all 3 bounding
box edges ĜE showed an average absolute error of 67% and
average error of -6% (±95%). These results suggest that the
estimation on average slightly underestimates the real volume
of the cluster, as expected from a single frame estimation that
can only detect the face area of the cluster facing the camera.
The very high standard deviation suggests this measure to be
inaccurate for volume estimation and therefore the volume
was not analyzed. Therefore, further analysis is focused on
ĜE (percentile box edges). The analysis is conducted on the
unfiltered data (including outliers), for manual labeling, with
ROIMR fed directly into the fine tuning process (no ROICM ).

C. Sources of error identification

In the controlled outdoor setup, error as function of view-
point (front/right/left) and background presence (yes/no) are
presented in Fig 8. Results show statistically significant
(p.val < 2e−16) lower error for images with the background
present (3.06-3.18 cm compared to 3.57-3.76 cm). Results also
show statistically significant (p.val = 0.004) lower error for
images taken from the right with no background compared
to front and left views. These differences between viewpoints
are not observed for images taken with a background. The
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Fig. 8. Estimation accuracy as function of viewpoint (front/left/right) and
background presence (yes/no) for the controlled outdoor setup.

Fig. 9. Estimation accuracy as function of viewpoint (front/left/right) and
cluster position (top/center/bottom) for the controlled outdoor setup.

differences may be explained by the sun direction (similar to
[18]), which made detection, annotation and depth information
extraction to be more complex, while presence of background
seemed to simplify both the annotation and the depth infor-
mation extraction.

Error rates as function of viewpoint (front/right/left) and
cluster position (top/center/bottom) are presented in Fig 9.
Results show statistically significant (p.val < 2e−16) increase
in error with increase in vertical cluster position, with very
high error rates for top clusters. This could be explained both
by distortion differences in depth errors at different locations
in the image [15], and the complexity of annotation of non
central areas (Fig. 5). Hence, analysis of those clusters could
be either disregarded a-priori or performed with the camera
higher up. Results also suggest that a right viewpoint leads to
statistically significant (p.val = 7.2e − 09) lower error rates,
unless the cluster is located at the bottom of the plant, in this
case a front view is preferable. This can be explained by less
direct sun exposure in bottom clusters leading to less distortion
of the data acquired from the front viewpoint.

For the commercial vineyard setup, error as function of sun
direction (facing/back) and viewpoint (front/right) is presented
in Fig 10. Results show no statistically significant differences
in natural light direction (p.val > 0.05), this could be partially
attributed to the imbalanced number of clusters identified by
the human annotator in the lane facing the light versus the
lane with back to the light (26 clusters and 6 accordingly).
The differences in viewpoint were borderline (p.val = 0.097),
most probable due to the imbalanced dataset mentioned above.

IV. CONCLUSIONS

In this paper we present a method for outdoor grape size
estimation using a commercial RGB-D camera mounted on
a mobile robotic platform. The best algorithm resulted in a
~2.9 and 3.6 cm average absolute error in length and width
estimation compared to ground truth (Eq. 3) for a controlled
outdoor setup and commercial vineyard setup respectively. The

Fig. 10. Estimation accuracy as function of viewpoint (front/right) and sun
direction (facing/back) for the commercial vineyard setup.

algorithm is based on fitting a bounding box to fine tuned
data through color based k-means clustering. The algorithms
showed robustness to the size of the detected or labelled
region.

Due to the lack of available RGB-D sensors operating reli-
ably in the field, there are a very limited number of published
work to compare the reported results to. Yield estimation
efforts often focus on the end mean - report of yield accuracy,
while not reporting accuracy of the intermediate steps such as
detection accuracy, or volume estimation accuracy. This paper
focuses on estimation of grape cluster size accuracy, under the
assumption that better size estimation accuracy will lead to
better yield estimation (supported by previous findings [11]).
As a result, no grapes were harvested to estimate yield.

Size estimation of crops is also relevant to the robotic har-
vesting domain, where several relevant work can be mentioned
for comparison. Luo et al., [26] reported an error of 1.6-1.9 cm
for a dataset of 12 grape clusters. However, the selected clus-
ters were captured in closeup images without occlusion, and
no sensitivity analyses were performed. For apple harvesting,
Gongal et al., [27] reported 69-84% size estimation accuracy in
outdoor conditions. Laboratory conditions improve the results
significantly with reported 0.4-0.6 cm error for post harvest
measurement of mango fruits [28] and 0.8-1% error for size
estimation of olives in controlled photo box conditions [29].

The results of this paper suggest that high accuracy vine
cluster size estimation is possible in outdoor conditions using
consumer level RGB-D cameras. The presented size estimation
with depth cameras can lead to improved yield estimation
results. The differences in error obtained from different view-
point stresses previous work that sensor pose is an important
parameter to be considered in design of automation procedures
in outdoor conditions [18]. The higher error rates in the top
clusters compared to bottom clusters suggest future scanning
should be performed at several heights. The experiment in
a commercial vineyard confirmed that grapes and foliage in
the next lane are successfully filtered out and therefore do
not influence the results. The reason for the slightly lower
performance in vineyard conditions compared to the controlled
outdoor setup can be affiliated to the higher occlusion rate in
the vineyard setup at the end of the growing season, when
the experiment was held. Finally, presence of background
showed significantly better accuracy, suggesting, incorporation
of such a background during scanning is preferable. However,
the decision to do so depends on logistical and financial
considerations that should be taken into account.

Introduction of an auto-detection algorithm in the controlled
outdoor setup increases the average absolute error to 4.4-
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4.6 cm. Therefore, the system will benefit from applying
more sophisticated detection algorithms based on advanced
machine learning and deep learning techniques (e.g [10]).
These require large datasets which can be collected using the
mobile robotic platform and protocols presented in this paper.
The released GRAPES3D dataset, will hopefully contribute
to further development of such algorithms. Additionally, our
results show that fitting of ellipsoid or cylinders do not provide
good estimation despite previously published result [2]. Future
work could also include other more sophisticated geometrical
fitting forms.

The reported results could additionally be valuable to the
harvesting robotics community that are also interested in grape
cluster size estimation, as mentioned above. For greater cluster
size estimation robustness, the research should be validated
in additional vineyard conditions including different seasons,
growing conditions, and cultivars.
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