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Abstract: This paper presents two elements for the collaboration of a human operator with a robotic 
sprayer: definition of human-robot collaboration levels and a spraying coverage optimization function. 
Four levels of human–robot collaboration for marking the areas to be sprayed are developed and 
presented. A Spraying Coverage Optimization Function (SCOF) is developed as a utility function that 
evaluates the profit [$] of the spraying process given the process variables values. The SCOF influencing 
parameters are classified and presented.  
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1. INTRODUCTION 

Pesticides are an integral part of the worldwide agriculture. 
Between 30 and 35% of crop losses can be prevented when 
harmful insects and diseases are eliminated by spraying 
pesticides (Cho and Ki, 1999). Although pesticides are 
needed in modern agriculture, they are poisonous and are  
dangerous for humans (Dasgupta et al., 2007, Rogan and 
Chen, 2005) and the environment (Pimentel and Lehman, 
1993, Reus et al., 2002).  

Developing a target-specific pesticide robot sprayer can 
reduce the amount of pesticides used in modern agriculture 
and potentially remove the human from the pesticide 
spraying process. Studies show that up to 60% of pesticide 
use can be reduced by using selective sprayers (Elkabetz et 
al., 1998, Gil et al., 2007, Goudy et al., 2001).  

For economic feasibility the robotic sprayer must be able to 
detect and spray more than 95% of the targets successfully 
(Blackmore et al., 2001). Despite intensive R&D in detection 
of agricultural objects, most target detection applications 
(grapes, apples, tomatoes, oranges, peaches, melons, 
eggplants, and strawberries) result in only 75–80% detection 
of targets with a maximum of 90% successful detection noted 
(Berenstein et al., 2010, Jeon et al., 2005, Lamm et al., 2002). 
In a spraying application it is important to minimize also the 
false alarms so as to reduce overall pesticide material and 
minimize environmental pollution.  

In order to overcome this 95% target detection barrier, a 
human-robot collaboration method was developed under the 
assumption that improved system performance can be 
achieved by taking advantage of human perception 
capabilities. The primary goal of this work is to increase the 
target detection HIT rate over 95%. A secondary goal is to 
minimize the False Alarm (FA) detection rate. These goals 
are expected to be achieved by the collaboration of a human 
operator with the robotic target detection process.  

This paper presents two elements for the collaboration of a 
human operator with a robotic sprayer: human-robot 
collaboration levels and a Spraying Coverage 
Optimization Function (SCOF). Other elements critical for 
implementing an operational human-robot collaborative 
system include the  spraying method (Berenstein and Edan, 
2012b), interface design (Berenstein et al., 2012) and the 
marking method (Berenstein and Edan, 2012a) are underway. 

Optimal spraying application is defined as a homogenous 
layer of pesticide applied solely toward the target (grape 
clusters or foliage). Spraying Efficiency (SE) is calculated by 
evaluating four spraying attributes: i) sum of area sections 
within the target area that the sprayer missed, ii) the amount 
of pesticide material sprayed outside of the target area, iii) the 
thickness of the spraying layer and iv) the spraying 
homogeneity (achieved by minimizing spraying overlap). The 
SE depends on several parameters related to the Human 
Operator (HO), the robotic sprayer, the HO-robot 
collaboration method and the specific SCOF affecting 
parameters as outlined in section 4. 

The developed methods were applied for a case study of 
detecting grape clusters in vineyards which is considered a 
complicated case. Due to the non-uniform and incoherent 
shape of the grape clusters (as opposed to the uniform round 
shape of citrus) both the human and the robot must mark the 
entire areal position of the target (as opposed to solely 
marking the  center of mass in circular objects e.g., citrus, 
apples). 

2. HUMAN-ROBOT COLLABORATION LEVELS 

Four levels of human–robot collaboration for target marking  
have been developed based on Sheridan’s 10 levels of 
human-robot collaboration (Sheridan, 1992) and based on 
previous work in agricultural target detection (Bechar and 
Edan, 2003). The motivation of incorporating a human 
operator in the target marking process is to use the human 
outstanding perception skills to improve target detection and 
marking. 
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Collaboration level 1 – fully manual human target 
marking. The human has a fixed period of time, 
corresponding to the robot's advance speed along the row, to 
mark maximum target area with maximum accuracy. 
Maximum accuracy is defined as maximum target area along 
with minimum foliage within the marked area (max HIT and 
min FA). Fig. 1a illustrates the human target marking 
procedure where the red circles indicate the marked areas. 
Fig. 1b illustrates the marked image for post analysis 
(Berenstein and Edan, 2012a).  

  

a b 

Fig. 1 - Collaboration level 1, (a) user marked image, (b) 
image for analysis 

Collaboration level 2 – robot suggests, human approves. 
For every captured image the grape clusters are automatically 
marked using a machine vision algorithm for grape clusters 
detection (Berenstein et al., 2010). The human receives the 
robot marked image and has the option to approve or decline 
the robot marked areas. The human must approve every 
singulated area in order for the area to be sprayed. After 
confirming the robot marking areas, the human has the option 
to manually add areas to be sprayed. Fig. 2a illustrates the 
procedure where the red circles are the human marks and the 
blue background is the robot suggestion. Fig. 2b illustrates 
the marked image for post analysis where the red area 
represents the human marking and the blue area represents 
the robot marks. 

  

a b 

Fig. 2 - Collaboration level 2, (a) user marked image, (b) 
image for analysis 

Collaboration level 3 – robot marks, human supervises. 
The human receives an image with grape clusters marked by 
the robot using machine vision algorithms (Berenstein et al., 
2010). As opposed to Collaboration level 2, the human does 
not confirm the robot marking. The human has the ability to 
manually reject robot marking areas and to add areas to be 
sprayed (Fig. 3).  

  

a b 

Fig. 3 - Collaboration level 3, (a) user marked image, (b) 
image for analysis 

Collaboration level 4 – fully autonomous robot marking. 
This collaboration method corresponds to Sheridan’s 10th 
level of automation where the computer decides everything 
and acts autonomously with no human operations (Sheridan, 
1992). With this collaboration level the robot  uses machine 
vision algorithms (Berenstein et al., 2010) to detect the grape 
clusters and  sprays solely the detected areas. 

The method in which the human operator marks the targets 
(e.g., marking the target center with constant/variable 
diameter, “free hand” marking of entire contour) can 
significantly influence system performance. Several methods 
for manually marking the targets by the human have been 
developed and evaluated in order to achieve efficient manual 
target marking method (Berenstein and Edan, 2012a). The 
marking methods consider the relevant parameters affecting 
the marking process such as the method of pointing out the 
entire target area, marking time and accuracy. 

3. SPRAYING COVERAGE OPTIMIZATION 
FUNCTION (SCOF) 

The Spraying Coverage Optimization Function (SCOF) is the 
proposed tool to provide meaningful data about the spraying 
process. The SCOF is designed in a general form in order to 
correspond to most existing spraying applications.  

The SCOF is defined as a utility function that evaluates the 
profit [$] of the spraying process given the process 
parameters values. Additionally, the SCOF will be able to 
recommend the best combination of system variables and 
their values (e.g., nozzle type, operating pressure, human-
robot collaboration level) enabling the farmer to select them 
and modify them accordingly.  

3.1. SCOF analytic formation 

The general form of the SCOF is described as: 

(1) TFAHp VVVV ++=  

Where, PV (Profit) is the overall profit from the spraying 

process, HV (Hit) is the profit from spraying the designated 

area, FAV (False Alarm) is the profit from spraying the 
background instead of the designated area (foliage instead of 
grape clusters), TV (Time) is the profit of the operation time. 

It should be noted that the SCOF can result in negative profit 
in which the farmer looses from the specific spraying case. 
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The profit from spraying the designated area ( HV ) is 
described in (2): 

(2) pesticidepesticideMissHHHH GVGpGpAV ⋅−⋅−−⋅⋅= ])1([  

Where, A [ Area ] is the target area, Hp is the system 

probability of spraying the designated area, HG [ Area/$ ] is 

the profit from spraying the designated area, MissG is the 

profit from missing the designated area, pesticideV [ Volume ] is 

the amount of pesticide used and pesticideG [ Volume/$ ] is the 

cost of the spraying material per volume. 

The system probability Hp is composed of the probability of 

target detection procedure and the probability of spraying the 
designated area as described in (3): 

(3) hitsprayerdetectedH ppp ⋅=  

Where, detectedp is the probability that the area will be detected 

and hitsprayerp is the probability that the material to be sprayed 

will hit the designated area.  

The system profit FAV is described in (4): 

(4) FAFAFA GAV ⋅−=  

Where, FAA [ Area ] is the area of the false alarm (non-target 

sprayed area), FAG [ Area/$ ] is the profit from spraying non 
designated areas.  

The system operational costs are described in (5): 

(5) robotrobothumanhumanT GtGtV ⋅−⋅−=  

Where, humant is the time the human is occupied, humanG [

time/$ ] is the human cost per time unit, robott is the 

operating time of the robot, robotG [ time/$ ] is the robot 

operational costs per time unit. 

The SCOF is constructed from a set of static constants (e.g.,

HG , robotG , pesticideG ) and variables that are situation dependent 

(e.g., detectedp  has four optional values depending on the 
human-robot collaboration level). In order to create a valid 
function that reflects the outcome profit from the spraying 
process these parameters must be evaluated. 

4. SCOF AFFECTING PARAMETERS 

The SCOF affecting parameters are divided into several 
classes according to their influencing subject. 

4.1. Sprayer parameters 

Several parameters related to the sprayer mechanization 
effect the SCOF. 

Pesticide flow rate is determined by the pesticide layer 
thickness required to cover the target according to the grower 
demands. The flow rate can be set by controlling the sprayer 

pressure and by changing the spraying nozzle orifice. The 
flow rate affects the SCOF pesticideV value.  

Spray geometry, the geometric projection of the spray on the 
target. Traditional sprayers use nozzles with round spray 
projection. The spray geometry influences the dispersing of 
the pesticide and the spraying resolution. By using a small 
diameter round shaped sprayer, the spraying resolution can be 
higher on behalf of a larger number of sprays per target (e.g., 
the target in Fig. 4a requires 15 sprays to cover the target 
while in Fig. 4b only 7 sprays). The spray geometry 
parameter affects the SCOF FAA value and the robott value (less 
number of sprays implies less time to spray the target). 

  

a b 

Fig. 4 - Spray diameter, (a) small diameter, (b) large diameter 

4.2. Robot parameters 

Several parameters as indicated below influence the robot 
sprayer (Fig. 5) performance. 

 

Fig. 5 - Robotic sprayer (Berenstein et al., 2010) 

Robot target detection, the robot target detection procedure 
is based on algorithms developed to detect grape clusters 
using machine vision (Berenstein et al., 2010). The robot 
target detection parameter affects the detectedp value.  

Robot travelling speed is the robot movement speed along 
the vineyard row while performing the spraying procedure. 
The travelling speed affects the robott and the detectedp value.  

Targeting the nozzle toward the target accuracy, the 
spraying nozzle is directed toward the target by using a 
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Pan\Tilt head (Fig. 6). The accuracy of the pan\tilt head 
affects the hitsprayerp value. 

  

a b 

Fig. 6 – (a) Pan\Tilt head with spraying nozzle attached, (b) 
spraying boom with spread nozzles 

4.3. Human parameters 

This class includes parameters related to the human operator. 

Human expertise affects the SCOF detectedp  value. An expert 

operator can improve the target detection and marking. 

Human fatigue affects the detectedp  value of the SCOF. The 

system is able to cope with the operator fatigue by changing 
the human-robot collaboration levels. However, increasing 
the collaboration level increases fatigue. In extreme case of 
human fatigue, a fully autonomous robot marking 
collaboration level can be applied (level 4). 

Human workload affects the SCOF detectedp  value. In the 
same manner as the human fatigues, the system is able to 
cope with the human workload by changing the human-robot 
collaboration levels. 

Situation awareness is the comprehension of grape clusters 
within the image frame. The situation awareness parameter 
affects the  detectedp  value. 

4.4. Human-robot collaboration parameters 

This class summarize the parameters related to the way 
human operator collaborates with the robot and its effect on 
the SCOF. 

Areal target marking method, the target marking process 
can be applied using several target marking techniques. The 
target marking technique affects the detectedp value and the 

FAF  value of the SCOF. In a parallel study three methods of 

target marking methods were evaluated (Berenstein and 
Edan, 2012b). 

Collaboration interface is defined as the way the human 
interacts with the computer (screen size, touch screen/ stylus 
pen/mouse). The interface technology and the information 
display affects the  detectedp value and the FAA  value of the 
SCOF (Berenstein and Edan, 2012a, Berenstein et al., 2012). 

 

 

4.5. Environmental conditions parameters 

Wind Speed and direction affects the SCOF hitsprayerp value. 

The robot targeting algorithms must consider this parameter 
in order to precisely direct the pesticides toward the target. 

4.6. Biological related parameters 

Pest spread, the amount of required pesticide is proportional 
to the pest spread. This parameter affects the pesticideV  value 

(more pesticides must be sprayed).   

Period during the season parameter, the size of targets 
change along the season (the grapes grow during the season). 
This parameter affects the Spray Geometry parameter 
(small target require small spray diameter and vice versa). 

5. AUTONOMOUS ROBOT OPERATION 
PRELIMINARY ANALYSIS 

Preliminary analysis is presented for the autonomous robot 
operation, the fourth collaboration method in which the 
human is not involved. Hence, the SCOF affecting 
parameters related to the human can be neglected. In this 
spraying scenario the robot moves along the vineyard row in 
step mode (i.e., moves a constant distance � stops � 
performs the task � moves a constant distance). In each step, 
the robot captures an image that contains grape clusters. The 
step length is equal to the captured image width. The images 
width in this case is approximately 1500[mm] (as a result of 
the agricultural terrain the distance between the robot and the 
vineyard row cannot be constant, hence, the images width are 
not constant). 

Fig. 7a is an image capture from a commercial vineyard 
acquired in Lachish, Israel during the 2010 growing season. 
The image resolution is 600X800 and the image width is 
1500[mm].  

  

a b 

Fig. 7 – (a) Vineyard image, (b) Area to be sprayed (257985 
pixels) 

Pixel dimensions can be calculated as: 

(6) ][875.1
800

1500
mmwidthpixel ==  

(7) ][5156.3875.1 22 mmareapixel ==  

According to (Berenstein et al., 2010) the detectedp is 90% of 

the grapes in the image. hitsprayerp is currently considered to be 
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100% (on-going experiments are dedicated to evaluate this 
value). 

(8) 9.019.0 =⋅=Hp  

(9) ][906.0][9069725156.3257985 22 mmmA =≅⋅=  

(10) ][0906.0
10

L
A

V ≅=pesticide  

For this case study we assume that it requires 1[L] to cover 
10[m2] and that the gain from spraying the target ( HG ) is 

2[$/m2], the loss of missing target ( MISSG ) is 3[$/m2] and the 

gain from false alarm ( FAG ) is 0.5[$/m2].  

(11) [$]453.010]3)9.01(29.0[ =⋅−⋅−−⋅⋅= pesticideVAVH  

According to (Berenstein et al., 2010) approximately 30% of 
the area detected as targets are False Alarms. 

(12) [$]1359.05.0*3.0* −=−= AVFA  

(13) [$]008.0
$

10[sec]3 −=







⋅−=⋅−=

h
GtV robotrobotT  

In  (13) we assume that the time required to spray the 
designated area is 3[sec] and the operational cost of the robot 
are 10[$/h]. These values will be investigated in depth in 
future research.  

The overall theoretical gain from spraying Fig. 7a is: 

(14) [$]309.0008.01359.0453.0 =−−=++= TFAHp VVVV  

This case study shows that the profit from spraying the area 
captured in the image is 0.309$. Since this value is positive, 
the SCOF advises the farmer that he will gain from spraying 
the image using autonomous robot. This result refers to a 
spraying distance of 1.5m. By normalizing this result to 1m 
(0.206[$/m]) and multiplying by the entire vineyard row 
length, the cost of spraying the entire vineyard can be 
estimated. 

The size of a common vineyard is 50X100[m], the distance 
between two rows is 3[m] hence, each field contains 17 rows 
with length of 100[m]. The overall profit from spraying such 
a field is: 

(15) [$]700206.0100217 ≅⋅⋅⋅=profitoverall  

Table 1 summarizes the SCOF sensitivity analysis of three 
parameters: detectedp ,

HG and 
MISSG . Results indicate that 

MISSG  
has high influence when the target detection rate is low and 
vice-versa, when the target detection rate is high, the 

MISSG  

has low influence. 
HG  has high influence on the spraying 

profit. Increasing detectedp  strongly effects the profit with an 
average profit of 500$ per field spray for 5% improvement of 
detection. 

 

Table 1 - Sensitivity analysis for the overall spraying 
profit 

detectedp  
3

2

=

=

MISS

H

G

G  
3

1

=

=

MISS

H

G

G  
1

1

=

=

MISS

H

G

G
 

2

2

=

=

MISS

H

G

G  
1

3

=

=

MISS

H

G

G  

0.7 -1355 -2794 -1560 -738 1317 

0.8 -327 -1971 -1149 86 2139 

0.85 186 -1560 -944 495 2550 

0.9 700 -1149 -738 906 2962 

0.95 1214 -738 -532 1317 3373 

 

By using the same set of equations [ (9),  (10),  (11),  (12),  (13)] 
for estimating the farmer gain from spraying the entire field 
regardless of the grape clusters positions  (16), we reveal a 
farmer loss  (17). 

(16) [$]274.0008.0390.0124.0 −=−−=++= TFAHp VVVV  

(17) [$]931274.0100217 −≅⋅⋅⋅=profitoverall  

The farmer loss from not spraying anything in the field (and 
not operating the robot) is [ (18),  (19)]: 

(18) [$]271.000271.0 −=−−−=++= TFAHp VVVV  

(19) [$]921271.0100217 −≅⋅⋅⋅=profitoverall  

 

6. CONCLUSIONS AND FUTURE WORK 

Improved target detection can be achieved by integrating a 
human with the robot. This paper presented two elements for 
implementation and evaluation of a human-robot cooperative 
sprayer. 

Preliminary results indicate that the farmer’s loss from 
spraying the entire field is greater than when not spraying the 
field at all. This conclusion is based on estimated gain values 
that will be investigated in depth in future research.  

On-going experiments (Berenstein and Edan, 2012a) aim to 
evaluate the detectedp  values for the first human-robot 
collaboration level. These experiments include evaluation of 
humans marking grape cluster targets with two optional robot 
traveling speeds.  

Future work will also include detailed evaluation for all 
effecting parameters and collaboration levels similar to 
Bechar et al. (2007). This will be conducted in simulation, 
and in both lab and field experiments using the vineyard 
spraying robot (Berenstein et al., 2010). Additionally, 
optimization techniques will be used in order to find the best 
parameters combinations.   
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