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1  Introduction
Application of nutrients, fungicides and pesticides is one of the most important 
processes in agricultural production and can have a significant impact on crop 
yield, quality and ultimately profitability (Singh et al., 2005). It is estimated 
that approximately 30–35% of crop losses can be prevented when harmful 
insects and diseases are eliminated by applying pesticides (Cho and Ki, 1999). 
Although pesticides are needed in modern agriculture, they are poisonous and 
dangerous for humans (Dasgupta et al., 2007; Rogan and Chen, 2005) and the 
environment (Pimentel and Lehman, 1993; Reus et al., 2002).

The current common approach for pesticide application is mechanized 
non-selective spraying in which a human drives a tractor connected with a 
mechanized sprayer that sprays the crops continuously. The sprayer can be 
mounted (Fig. 1a) or towed by the tractor (Fig. 1b). Another method of pesticide 
application includes a human operator selectively spraying targets using a 
backpack sprayer. However, this type of spraying is rarely in use due to the 
long operational times, the exposure of the human to the hazardous pesticide 
material and human fatigue. Despite the use of pesticide protection equipment 
(e.g. central filtration system and personal head mask for the mechanized and 
manual spraying methods, respectively) the human is still exposed to hazardous 
pesticides that can cause negative health issues (Swan et al., 2003).
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Agricultural robots have been developed for many operations, such as field 
cultivation, planting, spraying, pruning and selective harvesting (Edan et al., 
2009; Nishiwaki et al., 2004; Oberti et al., 2016). Robotic spraying technology 
can benefit from these latest developments in agri-related robots.

Robotic technology can provide a way to reduce the quantity of pesticide 
applied, improve its sustainability and reduce its environmental impact 
(Slaughter et al., 2008). A target-specific robotic sprayer can reduce the 
amount of pesticides applied in modern agriculture and potentially remove or 
minimize the human presence during the pesticide spraying process (Lee et al., 
1999). Studies show that up to 60% of pesticide use can be reduced when fruit 
and vegetables are sprayed specifically (Elkabetz et al., 1998; Gil et al., 2007; 
Goudy et al., 2001).

A review on autonomous robotic weed control systems (Slaughter et al., 
2008) describes the current status of the four core technologies (guidance, 
detection and identification, precision in-row weed control and mapping) 
required for the successful development of a general-purpose robotic system 
for weed control and sprayer robot. Although several complete robotic 
weed control systems have demonstrated the potential of technology in the 
field, additional research and development are needed to fully realize this 
potential. The two core tasks for an agricultural spraying robot are sensing 
– for target detection – and ‘robotics’ – for the spray execution (Song et al., 
2015).

Automation in the weed control process has received increased attention 
from the scientific community and is already in use in the agricultural industry 
(Slaughter et al., 2008). Since mechanical removal is a difficult process, the 
plantations use herbicides to remove unwanted plants (Lameski et al., 2018). 
Slaughter et  al. (2008) presented a review describing the current status of 
the four core technologies (guidance, detection and identification, precision 
in-row weed control and mapping) required for the successful development 

Figure 1 Tractor sprayers. (a) The sprayer is mounted directly on the tractor (also known 
as three-point sprayer), (b) trailed sprayer where the sprayer is being towed by the tractor.
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of a general-purpose robotic system for weed control. Since then, several 
publications showed advances in robotic weeding (Vuong et al., 2017; McCool 
et al., 2018; Pérez-Ruíz et al., 2014). A commercially available automated 
weeder has become available for the farm (BlueRiver1).

2  Challenges in current robotic sprayers
There are four core technologies required for developing a general-purpose 
robotic sprayer (Slaughter et al., 2008): guidance, detection and identification, 
precision in-row weed control and mapping. The developments must deal with 
the three sources of variation in a crop environment: objects, environment and 
crops (Bac et al., 2014).

2.1  Guidance and mapping

Accurately travelling along crop rows is a crucial proficiency agricultural robots 
must have. While the most common solution to guide vehicles along pre-
planned routes is to use global navigation satellite systems (GNSS), the high 
cost of using high-precision GNSS and the lack of availability in all agricultural 
environments (Vázquez-Arellano et al., 2016) has led to investigations on how 
to guide the robot using computer vision (English et al., 2014). In the last few 
decades, vision-based guidance systems and algorithms were investigated in 
depth (Li et al., 2009; Reid et al., 2000). Research and development included 
guidance using RGB images, point cloud (depth images) and the use of 
multispectral sensors (Table 1).

Global positioning systems (GPS) are the key tool used for positioning 
and maintaining maps for precision agricultural tasks and are used for yield 
mapping and variable chemical applications. Real-time kinematics (RTK) GPS 
which has improved accuracy can be used for automated vehicle guidance 
(Slaughter et al., 2008). Bak and Jakobsen (2004) developed a robotic 
platform for mapping of weed populations in the field. Their work included the 
development of the robotic platform, the platform controller and experiments 
of the platform manoeuvring in the field. Peteinatos et  al. (2014) developed 
ground-based sensors carried by a robot in the field to detect weed and weed 
infestation level.

2.2  Target detection

One of the main barriers to pesticide reduction using robotic sprayers is the 
target detection process. Despite R&D performed along the past decade 

1  http://www.bluerivertechnology.com.

http://www.bluerivertechnology.com


 The use of agricultural robots in crop spraying/fertilizer applications4

© Burleigh Dodds Science Publishing Limited, 2019. All rights reserved.

(Table 2) detection rates are low with a maximum of a 90% hit rate. The reasons 
for these low rates are because of the complicated field conditions caused 
by the changes in illumination (due to changes in the sun direction, clouds), 

Table 1 Agricultural robotic guidance

Application Sensor Reference

Robot guidance along crops rows – open field RGB English et al. (2014)
Driving along row crops – open field RGB Xue and Xu (2010)
Row navigation – open field RGB Chang and Song (2017)
Autonomous speed sprayer guidance using vision 
and fuzzy logic

RGB Cho and Ki (1999)

Crop rows detection for agricultural robots 
navigation

RGB Jiang et al. (2010)

3D imaging systems for agricultural applications 3D Vázquez-Arellano et al. 
(2016)

Path planning and obstacle avoidance – row crops Stereo vision Rovira-Más et al. (2006)
Autonomous navigation – maize field LIDAR Hiremath et al. (2014)
Robot navigation and plant detection Ultrasonic Harper and McKerrow 

(2001)
Mapping and navigation – open field Sonar Toda et al. (1999)
Vegetation detection for mobile robot navigation Multispectral Bradley et al. (2004)
Vehicle steering control using overhead guide N/A Gat et al. (2016)
High-precision straight-line navigation 
– greenhouse

Six axis 
compass

Chang et al. (2016)

Robot navigation in greenhouses Ultrasonic 
(low and mid-
range), digital 
compass, radar

González et al. (2009)

Table 2 Detection and identification

Application Sensor Reference

Real-time apple detection – apples RGB Bulanon et al. (2004)
Grape clusters and foliage detection RGB Berenstein et al. (2010)
Precision weed control – cotton RGB Lamm et al. (2002)
Human–robot collaboration for target detection 
– vineyards

RGB Berenstein and Edan 
(2012a)

Fusion of visible and thermal images for fruit 
detection

Thermal and 
RGB

Bulanon et al. (2009)

Adaptive thresholding for pepper detection RGBD Vitzrabin and Edan (2016)
Orange fruit detection algorithms RGB Hannan et al. (2010)
Fruit detection system using deep neural 
networks

RGB and NIR Sa et al. (2016) 

Weed detection (Avena sterilis) RGB Tellaeche et al. (2008)
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shading, the highly variable plant characteristics (size, colour, texture, shape, 
location) and the occlusion of targets (caused by leaves, branches). Berenstein 
et al. (2010) showed a 90% hit rate for grape clusters (green type) detection 
while using a colour CCD sensor and applying morphological manipulation 
on the RGB channels. Work by Diago et  al. (2012) showed 95% hit rate for 
detecting grape clusters (red type) but since the background was an artificial 
white screen (to avoid confounding effects from the background vegetation) 
the actual hit rate performance in real-world conditions will probably decrease. 
A recent review of this topic is Luo et al. (2016).

2.3  Control

The use of spraying nozzles in modern industry is widespread for different 
applications such as cleaning (Canny, 1986), coating (Sharifi et al., 2002) and 
painting (Breiman et al., 1984). Manufacturers offer a wide range of nozzles 
with manually adjustable spraying angles and even automatic spraying systems 
that can control the flow rate (e.g. Spraying Systems Co, PulsaJet, AutoJet). 
Due to the nature of products and applications in the industrial domain, the 
nozzle spraying angle is preset manually according to the designated target, 
which is well defined. In the agricultural domain, the targets have inherent 
high variability in size (e.g. watermelon, lettuce) and shape (e.g. grape clusters, 
cherry tomatoes, eggplant, kiwi, strawberry) (Kapach et al., 2012) that requires 
adjusting the spraying coverage to the specific target.

Extensive research has been performed over the past two decades on 
spraying robots, mainly for the automotive industry (Berenstein et al., 2015), 
with focus on path planning of the robotic arm and achieving uniform paint 
thickness layers (Diao et al., 2009; Sahir Arikan and Balkan, 2000; From et al., 
2011; Conner et al., 2005). Agricultural spraying robots (Table 3) have been 
developed mostly for weed control and plant protection applications (Pergher 
and Petris, 2008; Singh et al., 2005; Slaughter et al., 2008; Steward et al., 2002; 
Mandow et al., 1996; Zhao et al., 2016; Gazquez et al., 2016; Guan et al., 2015). 
One of the main goals of the agriculture engineering research, and in particular 
the precision agriculture community, is to reduce the use of pesticides while 
preventing crop losses due to pests (Pérez-Ruiz et al., 2015).

3  Case study: robotic sprayers in vineyards
In the following case study, we discuss the design and implementation of a smart 
spraying framework that includes a fully functional mobile robot positioned 
in the field equipped with a smart sprayer and a remote human supervisor 
assisting the robot with the target detection task. The case study deals with 
the smart implementation of pesticides towards grape clusters aiming to direct 
spray towards only the grape clusters.
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The potential reduction of pesticide use is inversely proportional to the 
per cent of grape clusters in the image. An analysis of the relation between the 
per cent of grape clusters in real field images to the saving potential is shown 
in Fig. 2. The saving potential increases with a smaller number of grape clusters 
in the image. Fewer grape clusters are common early in the season and can be 
caused by a gap between the grapevines.

The human and robot work collaboratively to detect targets in a sequential 
mode. The framework places the human at a remote location equipped with 
a target-marking device (e.g. a stationary computer, laptop, tablet, PDA or 
smartphone) and uses the human’s excellent perception skills to mark targets 
on images captured by the robot in the field.

3.1  Automatic adjustable spraying device

An adjustable spraying device (ASD) was designed and built as an experimental 
tool in order to implement the one target–one shoot (OTOS) spraying method 

Table 3 Weed and spray methods

Application Control method Reference

Site-specific weed management Direct-injection 
sprayer

Goudy et al. (2001)

Non-chemical weed control Electrical 
discharge

Blasco et al. (2002)

Weed vision-based perception Mechanical weed 
control

Strand and Baerveldt 
(2002)

Plant protection with a variable rate application Spraying, 
ultrasonic sensors

Gil et al. (2007)

Spraying robot – grape production Chemical spraying Ogawa et al. (2006)
Individual weed treatment using a robotic arm Chemical spraying Jeon et al. (2005)
Unmanned aerial vehicle for spray application Chemical spraying Huang et al. (2008)
Pesticide dose adjustment in vineyard spraying Chemical spraying Pergher and Petris 

(2008)
Precision spraying methods Coloured water 

spraying
Berenstein and Edan 
(2012c)

Human–robot collaboration for vineyard 
spraying

Coloured water 
spraying

Berenstein and Edan 
(2017)

Teleoperated robotic sprayer Water spraying Adamides et al. (2017)
Automatic adjustable device for precision 
spraying

Coloured water 
spraying

Berenstein and Edan 
(2018)

Specification development of a robotic system 
for pesticide spraying in greenhouse

Chemical spraying Komasilovs et al. 
(2013)

Information from spraying, harvesting and 
grading operation robot

Chemical spraying Arima et al. (2003)
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(Berenstein and Edan, 2012c), applying single spray for each target by adjusting 
the spraying diameter according to the target. Two other alternatives were 
evaluated, fixed nozzle spacing and optimal spray spacing, both with fixed 
spray diameter (i.e. several sprays to completely cover the target). Analysis of 
the spraying costs (Fig. 3) reveals the advantage of selecting the OTOS spraying 
method.

50
55
60
65
70
75
80
85
90
95

100

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Sa
vi

ng
 p

ot
en

tia
l (

%
)

Grape clusters in the image (%)

Figure 2 Evaluation results of the relation between saving potential and grape clusters in 
the image. Source: adapted from Berenstein et al. (2010).
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The device is mounted on to a mobile robotic sprayer that supplies 
pressurized pesticide. The operational concept of the ASD is as follows:

1 Direct the nozzle to face the crop (perpendicular to the crop).
2 Capture an image using the ASD camera.
3 Find the targets positions and diameters.
4 For each target perform the following routine:

a Direct the ASD towards the target centre,
b Adjust the nozzle diameter to equal the closing circle diameter of the 

target, and
c Open the sprayer electric valve for a specific pre-defined time.

3.1.1  ASD design and characteristics evaluation

The ASD is presented in Fig. 4. The ASD base is constructed from three 
aluminium parts, two pressure plates that mount the spraying nozzle and the 
two line beam lasers, and a shoulder. The shoulder is connected to the pressure 
plate with four screws and its height can be adjusted.

The ASD was based on a commercial spraying nozzle (AYHSS 16) using 
the recommended spraying pressure of 20 (bar). The spraying nozzle is 
constructed from two parts, the nozzle base and the nozzle cup. The nozzle 
base is mounted on to the pressure plates. The pressurized pesticide hose is 
connected to the nozzle base and the flow is controlled using an electric valve 
(on/off). The spraying diameter can be controlled by rotating the nozzle cap 
over the nozzle base. This nozzle was chosen since it is in common use among 
farmers that adjust the spraying diameter prior to the spraying task.

Figure 4 Spraying device. (a) Isometric view – CAD, (b) front view, (c) side view.
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A stepper motor, mounted on the shoulder, is used to control the spraying 
diameter. The stepper motor is connected to the nozzle cap using two tangent 
gears, one connected to the stepper motor and the other connected to the 
spraying nozzle cap (Fig. 4). Rotational feedback of the stepper motor is 
acquired using a rotational potentiometer (ten rounds, 1 KΩ) connected to the 
stepper motor gear. An Arduino (uno) board closes the stepper motor position 
loop using feedback from the potentiometer and the desired circular position.

Other peripheral sensors are mounted on to the ASD; a laser distance sensor 
(SICK DX35) for measuring the distance between the device and the target, a 
colour camera (Microsoft LifeCam Studio) for capturing images from the field 
and later used for automatic target detection and two line beam marking lasers 
(532 nm, 50 mW, 60°) positioned horizontally and vertically for marking a cross 
(+) over the target. The entire device is mounted on a Pan Tilt Unit (PTU) (FLIR 
D46-17) able to rotate horizontally ±180° and vertically +31° up to −80°.

A PC is connected to an Arduino board, laser distance sensor, colour 
camera, PTU and the electric valve controlling the pesticide flow. The main 
software for managing the ASD was based on Microsoft Visual Studio (C#). The 
software collects data from the ASD sensors and controls the ASD orientation 
by adjusting the PTU, the ASD nozzle by rotating the stepper motor and the 
electric valve opening/closure, according to the collected data.

The spray diameter was evaluated in order to find the spray diameter 
(spray cone) for varying nozzle apertures. Using this relation between the 
nozzle aperture and the spray diameter, the spray diameter can be adjusted 
according to the target size.

The experimental setup (Fig. 5a and b) included the ASD facing the target 
base with a target attached. The target base was constructed from steel net and 
was mounted vertically on a manually controlled conveyor in front of the ASD 
(Fig. 5b). The target used for evaluation was a white paper sheet, 0.5 m wide, 
which was stretched top to bottom and fixed to the target base (Fig. 5b shows 

Figure 5 The configuration of an experiment for spray diameter evaluation. (a) Experiment 
scheme, (b) field view of the experiment.
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the target fixed to the target base after spraying). In order to view the spray 
deposition and post-analyse the position of the spray, a red water-soluble food 
dye (Florma red 696) was used as pesticide replacement.

Each spray repetition included the following steps: (1) attaching a new 
target to the target base, (2) setting the nozzle aperture to the desired value, 
(3) opening the spray flow, (4) starting the conveyor movement towards the 
spray jet and (5) after the entire target base has crossed the spraying jet, the 
spray flow is closed and the conveyor stops. During the experiment, the robot 
was kept at a static position to ensure the ASD was static.

Image acquisition software was designed to capture a movie using 
the ASD camera along the spray process. After each spray repetition, the 
captured movie was saved for post-analysis. Each movie was manually 
scanned by a human expert to extract a single frame containing the target 
in mid-frame. The extracted frame was analysed manually for the spray 
boundaries (Fig. 6). Since the spray is cone-shaped, the spray diameter was 
evaluated by measuring the distance (in pixel units) between the upper and 
lower spray boundaries.

The experiments were performed at three distances between the ASD and 
the target (0.5, 1 and 1.5 m). For each distance, the nozzle angular position was 
between 175 and 210 with increments of 5 (units in potentiometer Ω). Three 
measurements were conducted for each distance–aperture combination. All 
experiments were performed at dawn ensuring no-wind conditions (this was 
confirmed by measuring the wind speed using Skywatch Xplorer 1).

The experimental results shown in Fig. 7 reveal the correlation between 
the nozzle aperture and the spray diameter for three measured distances. The 

Figure 6 Example of a single frame extracted from captured spraying movie. Using the 
captured frame, the boundaries (upper and lower) and the spray diameter of the sprayed 
target were extracted.
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measured spray diameter increases as the distance increases. In theory, the 
three curves are supposed to unite since both the camera’s field of view and the 
spraying cone have a linear trajectory. The spray dispersion is probably caused 
by the spray jet turbulence and air drag that affects the spray dispersion.

The spray diameter increases with the increase in distance between the 
nozzle and the target. This is because in the experiment the spray diameter 
is measured using the digital camera, which is located at the same distance 
as the spraying nozzle (Fig. 4, the spraying nozzle and the camera are located 
together), and is expressed using pixel units. Therefore, the measured 
spray diameter does not increase with the increase in distance but remains 
approximately constant due to the digital camera perspective.

Table 4 presents the curve fitting parameters for Fig. 7, where NA is the 
nozzle aperture and SD is the spray diameter.

By using the resulting curves for the different distances, the nozzle aperture 
can be calculated after extracting the target diameter. The spraying distance in 
most commercial vineyards is between 500 and 1500 mm. In order to correlate 
between the spraying distance and the nozzle aperture, an interpolation of the 
distance and the nozzle aperture can be applied.
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Figure 7 Experimental results of the spray diameter for three measured distances.

Table 4 Experimental results summary

Distance Trend line (power) R2

500 NA = 600.22∙SD−0.210 0.911
1000 NA = 490.97∙SD−0.184 0.782
1500 NA = 467.12∙SD−0.177 0.761
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3.1.2  ASD performance evaluation

An experiment was conducted in order to evaluate the performance of the ASD 
while implementing the results of the previous experiment (Table 4). Currently, 
the robotic sprayer is designed to perform the spraying task in step mode 
(Fig. 8): the robot travels a single step along the vineyard row, stops, captures 
images from the field, sprays the targets and moves another step forward. The 
experiment is based on the same work procedure. The robot movement speed 
was constant. One of the secondary goals of this experiment was to provide 
insights regarding the overall work procedure of the complete spraying system 
which will include the robot equipped with an ASD.

During the experiment, the ASD was attached to the robotic sprayer 
and was operated similarly to the planned robotic procedure which moved 
in step mode along the vineyard row (Fig. 8). During this experiment, the 
robotic sprayer was programmed to track a straight line placed at a 1.6 m 
distance from the target base (red plastic strip 50 mm width) (Fig. 9a). The 
robot was programmed to travel 1.6  m at each step. The ASD is mounted 
perpendicular to the robot’s travel direction and faces the target’s base 
(Fig. 9a). The target’s base is a polyethylene net (50  mesh), 11  m long, 
stretched between two anchoring poles and positioned parallel to the line 
at the floor. The targets are attached to the target’s base and the centre of 
the target is positioned 1.55 m high. In order to ensure a single target per 
image, the targets were positioned at intervals of 1.6 m, similar to the robot’s 
travel distance.

The targets are blue polyethylene round circles with varying diameters 
(300, 250, 230, 210, 190, 170 and 150  mm). To simplify the detection and 
classification of the targets, a red circle was attached to the centre of the main 
target. The diameter of the red circle was one-third of the blue circle diameter.

Artificial targets were used to enable accurate target detection. The targets 
consisted of a round, blue, polyethylene target with different diameters (150, 
170, 190, 210, 230, 250 and 300 mm). A round, red, polyethylene target was 
mounted on to the centre of the blue target. The diameter of the red target was 
one-third of the blue corresponding target (Figs. 9b and 10).

The target detection algorithm was based on colour thresholding and was 
implemented using MATLAB software equipped with the image processing 
toolbox. The detailed description of the target detection algorithm is presented 
in Berenstein and Edan (2018).

Following the detection process, the programme extracts the coordinates 
of the detected target’s centre and the minimum closing circle diameter in 
pixel units. These measures are used to control the sprayer (i.e. direct the PTU 
towards the target centre and adjust the spraying diameter according to the 
closing circle diameter).
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Figure 8 Robotic sprayer work procedure. The following experimental procedure was 
based on this figure procedure including the steps of directing the PTU towards the 
target core, adjusting the spraying nozzle and the actual spraying.
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The target detection algorithm, with all of its steps and unique values, was 
developed specifically for the artificial targets that were used in the experiments 
and it is not the core of this work. Needless to say that in order to use the 
suggested ASD, a specific target detection algorithm must be developed for 
the specific crop.

Similar to the previous experiment, a red water-soluble food dye (Florma 
red 696) was used as pesticide replacement to simplify the detection of the 
spray deposition.

The sprayed area was evaluated by both manually measuring the sprayed 
area’s diameter immediately after each spray and image processing of images 
captured immediately after each spray (Fig. 10).

The experiment included 12 repetitions of the robot travelling along the 
line on the floor and spraying the seven targets attached to the target base. 
Each target was sprayed for 2 s. All experiments were conducted early morning. 
Measured wind speed was zero in all experiments (measured using Skywatch 
Xplorer 1).

The results described here use the ASD in automatic mode: the ASD 
automatically directs the PTU towards the target centre and adjusts the spray 
diameter according to the closing circle diameter of the detected artificial target.

Figure 9  Experiment configuration. (a) Experiment scheme, (b) field view of the 
experiment.
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A visual inspection revealed that each target was fully covered by the 
spray. Experimental results are summarized in Fig. 11. The spray flows under 
gravitation force (Fig. 10) increasing the spray spot size which complicates the 
spray diameter analysis and was eliminated from the spray diameter evaluation.

The results of the automatically adjustable spray diameter show a constant 
increase of the sprayed diameter with the increase in target size; however, the 
ratio between the sprayed diameter and the target size decreases. This ratio 
can be addressed as the false detection ratio, and according to Fig. 11, this 

Figure 10 Image captured immediately after spraying.
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ratio decreases with the increase of the target size. The 150 mm diameter target 
was sprayed with coverage diameter of ~250 mm, whereas a 300 mm diameter 
target was sprayed with coverage of ~425 mm.

3.2  Agri-robotic platforms: description and experiments

A robotic platform was designed and built to serve as a research tool for 
investigating methods and devices designated for the agricultural domain in 
general and specifically for vineyard operations (Berenstein, 2016). The robot 
was designed to include all the necessary equipment, hardware and software 
required to accomplish autonomous and semi-autonomous (human-assisted) 
field tasks such as navigation along the vineyard row and spraying accurately 
towards the target area using the ASD (Section 3.1) (Berenstein and Edan, 
2017).

3.2.1  Platform description

The robotic chassis (Fig. 12a) is assembled from two identical platforms that are 
interconnected using a two degrees of freedom (DOF) universal joint (cardan 
joint). The first DOF is used to improve the turning radius and the second DOF 
allows the platform designers to neglect the need for a complicated suspension 
system. Although the robot is capable of turning using differential steering, 
allowing a relative angle between the platforms contributes to a smaller turning 
radius and minimizes side slip of the wheels, resulting in reduced wear of the 
vehicle and less ground trace. The platform payload is designed for 300 kg. 
A modular approach is taken with four identical wheel modules. Each wheel 
module consists of an ATV wheel (0.5 m diameter), wheel shoulder that connects 
the wheel to the platform and a 24 V-480 W electric motor. The electric motor 
is fixed to the platform and connected to the wheel using chain wheels. Using 
incremental encoders connected to each wheel, the wheel position and speed 
can be controlled using a developed kinematic model (Berenstein, 2016; 
Zaidner and Shapiro, 2016).

The robot is equipped with an electrical box that is mounted on to the front 
platform and contains a PC with an i7 processor, 7” touch screen, two electric 
motor controllers (Roboteq AX3500) and some small peripheral aids (e.g. 
Arduino boards, step motor controller). Other equipment is mounted on the 
platform including two colour cameras (Microsoft LifeCam Studio) (one facing 
forward for navigation and the second facing sideways for target detection), 
two car batteries 12  V 110  A/h, power generator 2500  W (Geko 2801) and 
commercial sprayer (200 L tank with internal combustion engine connected to a 
liquid pressure pump). A gamepad controller (Microsoft Xbox 360) is wirelessly 
connected to the robot platform and is used for manual manoeuvring of the 
robotic platform.
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The robot uses a fan-less spraying design in order to minimize the 
spraying drift and to achieve highly accurate spraying. The focus of the current 
experiments was to evaluate the detection and control aspects of the sprayer. 
It must be noted that it is important to follow up with agronomy experiments to 
validate the sprayer efficiency.

3.2.2  An integrative site-specific sprayer experiment

An experiment was designed to evaluate the human–robot collaboration 
framework for the site-specific target spraying task, focusing on the integrative 
performance of the three main components of the collaboration framework 
that were previously tested and evaluated separately: human marking methods 
(Berenstein and Edan, 2012a), levels of human–robot collaboration (Berenstein 
and Edan, 2012b) and the spraying device (Berenstein and Edan, 2018). For 
simplification and better control and evaluation, artificial targets were set in an 
artificial outdoor environment. The human–robot task was to spray the targets 
as accurately as possible, within a limited time frame that corresponded to the 

(a) (b)

(c) (d)

Figure 12 Robotic sprayer. (a) CAD drawing of two identical platforms interconnected 
using a two-DOF universal joint and wheel unit, (b) complete robotic sprayer with all of 
the main components and peripheral accessories attached, (c) robotic sprayer electric 
power scheme, (d) a focused ASD image within the overall robotic sprayer (lower right).
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sprayer speed as it advanced along the row. To simulate real-world conditions 
the human operator was located at Ben-Gurion University of the Negev, Be’er 
Sheva, Israel, 90 km south of the robotic platform, which was located at Beit 
Dagan, Israel.

To focus on the target detection/spraying tasks, the robotic platform was 
programmed to autonomously follow a red line on the floor (red plastic strip 
50 mm width) that was fixed at a 1.6 m distance in parallel to the target’s base 
(Fig. 13a). During each step, the robot travels 1 m to completely change the 
current frame point of view. The robot’s travel speed was set to 0.2 m/s. The 
ASD was mounted on to the robot, perpendicular to the robot’s travel direction, 
facing the target’s base (Fig. 13). Fifty targets were randomly spread along an 
18 m long path and were set at least 20 cm apart, imitating grape clusters.

Artificial targets were constructed from blue polyethylene plastic and were 
hand cut according to four shape patterns (Berenstein and Edan, 2017). In 
order to be as close as possible to commercial field conditions, the experiment 
included pre-defined TP and FP rates. Two types of targets were used: 38 
targets that can be detected by the robotic sprayer (targets with a red circle in 
the middle of the target) and 12 targets that cannot be detected by the robotic 
sprayer (targets with a yellow circle in the middle of the target).

Figure 13 Robotic platform following red strip. (a) Experimental scheme including the 
robotic platform and target base and (b) a photo of the robotic platform during the 
experiment.
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An artificial target detection algorithm was developed specifically for 
detecting the artificial targets and the colour of the circle in the middle (red 
for robot detectable and yellow for targets not detected). The target detection 
algorithm was based on simple colour thresholding and was implemented 
using MATLAB software equipped with the image processing toolbox. The 
algorithm was based on isolating the blue target in the image (the background 
of the image is the target base, which is white in colour) and identifying the 
colour of the circle in mid-target.

Since artificial targets were used in the experiment, the artificial target 
detection algorithm can reach a 100% TP rate and close to zero FP. In order to 
match vineyard field conditions, an FP area was added to the detected target 
surroundings. The pre-defined FPs were added using the MATLAB image 
processing tool. The mathematical morphology operation dilation was used 
to expand the computer detected target. Since each of the captured images 
is unique in the sense of different numbers of targets, target orientation 
and position, the added FP area is different for each image. The FP rate was 
set between 10% and 20%, corresponding to field FP results evaluated in 
Berenstein et  al. (2010) in field conditions with an average of 17.3% (with a 
standard deviation of 5.5).

Using the ASD, the targets were sprayed with red water-soluble food dye 
(Florma red 696). Each target was sprayed for 1 s and immediately after the 
spraying operation stopped, an image of the spray was captured and saved.

The communication between the robot and the remote human was based 
on the TCP-IP protocol. The robot obtained internet access using a smartphone 
HotSpot (4G LTE with random switching to 3G). The remote human–computer 
was connected to a high-speed academic network (Ben-Gurion University of 
the Negev internet) with a maximum rate of 1 Gbit/s.

The human task was to mark the target area using one of the marking 
methods and one of the suggested human–robot collaborations described 
above. The human used a desk computer equipped with a 21” screen. Each 
user was trained before the experiment with 20 images according to the 
training rate evaluated in Berenstein and Edan (2012a).

The spray quality was evaluated using four methods:

1 Marking comparison: comparison between the targets that exist in the 
image and the marked areas. The performance measures were TP and 
FP rates.

2 Spraying comparison: comparison between the targets that exist in the 
image and the theoretically sprayed areas. The performance measures 
were TP and FP rates.

3 Qualitative evaluation: analysis of the sprayed target (Fig. 14). Each 
sprayed target image was presented to an expert and was graded on a 
1–5 scale (Fig. 14). The performance measure was the TP rate.
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4 Spraying material estimation: an estimation of the quantity of spraying 
material used was conducted based on the ASD development results 
(Berenstein and Edan, 2018). The estimation compares the quantity 
of liquid that was used in each of the spraying experiments above 
compared to a simulated experiment of the robot continuously driving 
along the targets’ base with three open nozzles (similar to the traditional 
spraying method; Fig. 1b).

Twenty male and female students aged 25–40 participated in the experiments 
and were divided into two groups, one for each marking method (CDC and 
free hand). Each participant practised the three collaboration levels. For each 
collaboration level, the robot travelled a single time along the target base with 
steps of 1 m. The image switching time was set to 12 s.

For the fourth collaboration level (autonomous) the robot performed ten 
repetitions in each of which the robot travelled along the target’s base with 1 m 
intervals, captured the target’s frame, analysed the captured frame using the 
artificial target detection algorithm and sprayed towards each of the detected 
targets.

4  Conclusion
The experimental results of the target marking and collaboration levels 
indicate that the desired hit and FA values that can be selected by the farmer, 
and the best marking method and image switching time can be chosen. The 
highest hit rate was measured while using the first collaboration method (fully 
manual with no robot assistance). However, this was achieved only for the long 
switching time. This collaboration level also yielded high FA. When using the 
faster switching time, the best collaboration level is level 3. The lowest FA was 
measured while using collaboration level 2 with the free hand marking method 
for both image switching times.

The ASD and spraying method show the ability to perform the spraying 
task efficiently and economically. Pesticide application is reduced by spraying 
individual targets by directing the spraying device towards the centre of the 
target using a PTU and setting the diameter of the spraying according to the 

5 – outstanding 4 – very satisfactory 3 – satisfactory 2 – unsatisfactory 1 – poor

Figure 14 Target spraying evaluation scale 5 (outstanding)→1 (poor).
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shape and size of the target (according to the closing circle diameter of the 
target). The suggested ASD can be incorporated for different agricultural crops 
and for a variety of commercial applications.

The overall spraying duration for a single target was 11  s. This duration 
included general software commands, communication between main software 
and peripherals (MATLAB, Arduino), machine vision, PTU repositioning, 
spraying nozzle aperture adjustment, spraying and capture of image post-
spraying. It also included some software pauses located at critical points of the 
software. These pauses were used to control the experiment and to verify that 
the ASD is functioning as designed. The accumulated time of the pauses was 
8 s and spray time was 2 s. By eliminating the software pauses, the spraying time 
for a single target can be reduced to 3 s including the 2 s spraying time. Further 
time reduction can be achieved by optimizing the machine vision algorithms 
and the overall ASD control software.

An exercise was conducted to evaluate the possible pesticide savings when 
using the ASD in comparison with a traditional spraying technique, with the 
robot travelling at constant speed with open nozzles. The estimation was based 
on the number of targets (7.89) per frame presented in Berenstein and Edan 
(2012c) and on a robot travelling speed of 0.33 m/s (speed needed to spray 
targets for 1 s while using spraying nozzles with spray diameter of 0.33 m). The 
estimation assumes spraying one side of a single row in a commercial vineyard 
with a row length of 100 m. The expected pesticide use while using the ASD 
was 26.27  L and when using traditional spraying techniques (three nozzles 
constantly open) the expected pesticide use was 48.45 L. The estimation shows 
that pesticide use can be reduced by up to 45% when using the ASD.

An experiment to evaluate the elements of the collaborative human–robot 
framework working in sync was designed, implemented and evaluated. The 
experiment proves the feasibility of human–robot collaboration for the complex 
task of targeted spraying considering both TP and FP rates. The collaborative 
spraying system reduces the quantity of sprayed material by 50%, which has 
both economic and environmental impacts.

Results obtained can be used to implement a human–robot operational 
system by deciding on the best target-marking method and collaboration level 
according to the selected criterion. For example, if the TP rate is prioritized to 
ensure maximum application, full manual collaboration should be employed 
with a CDC marking method. To achieve the lowest FP rate (to minimize waste 
of material), collaboration level 2 should be employed using the free hand 
marking method. This is important since in the spraying task the selected 
criterion can change along the season depending on the conditions of pests, 
and environmental and growing conditions. For example, when there is a high 
risk of dangerous pests it is more important to ensure high coverage of targets 
(maximize TP rate) than wasted material (FPs). When risks are low the farmer 
prefers to save spray material as much as possible (minimize FPs).
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With minor adaptations, the human–robot collaborative framework can be 
easily used with other agricultural applications such as fruit picking, yield and 
disease monitoring and field exploration. For full robot operation, crop-specific 
target detection (e.g. Berenstein et al., 2010) and navigation algorithms (e.g. 
Rovira-Más et al., 2015) must be integrated. The framework can also be used 
in other commercial applications that require complex target detection such as 
border control and hazardous material environment.

5  Future trends
The modern agricultural industry is facing several challenges such as worldwide 
population growth and ageing (Gerland et al., 2014), climate changes affecting 
crops and migration (both rural-to-urban and political). Using field robots in the 
agricultural industry may help humanity to cope with these challenges.

As described in Section 2, several agricultural robots were developed and 
tested over the past three decades; however, there are several challenges that 
must be solved before deploying these robots in a commercial environment. 
BlueRiver is the first to present a smart commercial agricultural-selective 
sprayer. The BlueRiver device is carried by a tractor in the field driven by a 
human. By using deep-learning techniques and deploying GPUs at the edge, 
they were able to develop a reliable weed detection system. Developing an 
autonomous spraying robot brings new challenges such as accuracy of the 
navigation and spraying, the robustness of the system to weather, light, thermal 
and other external factors in the field. Other limitations are the safety and legal 
aspects. An autonomous robot operating in the field must be safe to humans 
and animals that might enter along the robot’s operations. As the robot may be 
considered as an agent acting on the behalf of others, legal responsibility for 
the actions of a robot falls on the individual who grants the robot permission to 
act on their behalf (Asaro, 2007).

Future research can also concentrate on improving the human–remote 
perception by adding advanced sensors (e.g. stereo vision, 3D cameras, a 
combination of RGB and LIDAR). It must be noted that if sensors are added, 
efficient design methods must be employed to display the sensed information 
so as to maximize information display while minimizing distraction. Hence this 
is an area recommended for future research. However, evaluating the robotic 
sprayer performance in real-world conditions is necessary.

An advanced remote human interface can also be developed in future 
work. We suggest that such an interface be implemented on a web platform 
to allow human control from different devices, such as smartphones, handheld 
computers, tablets and laptops. Another subject for future work related to 
the interface design can be the evaluation of different pointing devices such 
as touch screen, 3D mouse and a digital pen, and their effect on the human 
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marking performance similar to what has been recently investigated by 
Adamides (2016) for teleoperation tasks.

In order to maximize the farmer’s benefits, the overall spraying process 
must be economically optimized. Both the robotic sprayer and the human 
operator have operational costs (e.g. pesticide material, human salary, robot 
power consumption); the sprayed pesticides also influence the economics of 
the system (e.g. a sprayer missing the fruit can draw pests and damage the crop, 
and over-spraying can damage the foliage and exceed pesticide regulations).

6  Where to look for further information
Agricultural engineering journals and conferences are the best source for past 
and up-to-date information. One of the leading sources is the Journal of Field 
Robotics that presents the state-of-the-art research on agricultural robotics in 
general.

Other sources of information can be found in the leading agricultural and 
engineering journals and conferences:

 • International Conference on Robotics and Automation (ICRA)
 • Biosystems Engineering
 • IEEE Transactions on Automation Science and Engineering (T-ASE)
 • IEEE Transactions on Robotics
 • AgEng Conference

7 References
Adamides, G. 2016. User interfaces for human-robot interaction: Application on a semi-

autonomous agricultural robot sprayer. Ph.D. thesis. Open University of Cyprus.
Adamides, G., Katsanos, C., Constantinou, I., Christou, G., Xenos, M., Hadzilacos, T. and 

Edan, Y. 2017. Design and development of a semi-autonomous agricultural vineyard 
sprayer: Human-robot interaction aspects. Journal of Field Robotics 34(8), 1407–26. 
doi:10.1002/rob.21721.

Arima, S., Shibusawa, S., Kondo, N. and Yamashita, J. 2003. Traceability based on multi-
operation robot: Information from spraying, harvesting and grading operation robot. 
Proceedings 2003 IEEE/ASME International Conference on Advanced Intelligent 
Mechatronics (AIM 2003), 20–24 July 2003, pp. 1204–9, vol. 2.

Asaro, P. M. 2007. Robots and responsibility from a legal perspective. Proceedings of the 
IEEE International Conference on Robotics and Automation, Rome, pp. 20–4.

Bac, C. W., Henten, E. J., Hemming, J. and Edan, Y. 2014. Harvesting robots for high-value 
crops: State-of-the-art review and challenges ahead. Journal of Field Robotics 31(6), 
888–911. doi:10.1002/rob.21525.

Bak, T. and Jakobsen, H. 2004. Agricultural robotic platform with four wheel steering 
for weed detection. Biosystems Engineering 87(2), 125–36. doi:10.1016/j.
biosystemseng.2003.10.009.



 The use of agricultural robots in crop spraying/fertilizer applications24

© Burleigh Dodds Science Publishing Limited, 2019. All rights reserved.

Berenstein, R. 2016. A human-robot cooperative vineyard selective sprayer. Ph.D. thesis, 
Ben-Gurion University of the Negev.

Berenstein, R. and Edan, Y. 2012a. Evaluation of marking techniques for a human-robot 
selective vineyard sprayer. International Conference of Agricultural Engineering 
(CIGR-AgEng), Valencia, Spain (Unpublished), C-1090.

Berenstein, R. and Edan, Y. 2012b. Human-robot cooperative precision spraying: 
Collaboration levels and optimization function. Symposiums on Robot Control 
(SYROCO), Dubrovnik, Croatia (Unpublished).

Berenstein, R. and Edan, Y. 2012c. Robotic precision spraying methods. ASABE Annual 
International Meeting, Dallas, Texas.

Berenstein, R. and Edan, Y. 2017. Human-robot collaborative site-specific sprayer. Journal 
of Field Robotics 34(8), 1519–30. doi:10.1002/rob.21730.

Berenstein, R. and Edan, Y. 2018. Automatic adjustable spraying device for site-specific 
agricultural application. IEEE Transactions on Automation Science and Engineering 
15(2), 641–50. doi:10.1109/TASE.2017.2656143.

Berenstein, R., Shahar, O. B., Shapiro, A. and Edan, Y. 2010. Grape clusters and foliage 
detection algorithms for autonomous selective vineyard sprayer. Intelligent Service 
Robotics 3(4), 233–43. doi:10.1007/s11370-010-0078-z.

Berenstein, R., Hočevar, M., Godeša, T., Edan, Y. and Ben-Shahar, O. 2015. Distance-
dependent multimodal image registration for agriculture tasks. Sensors 15(8), 
20845–62. doi:10.3390/s150820845.

Blasco, J., Aleixos, N., Roger, J. M., Rabatel, G. and Molto, E. 2002. AE—Automation and 
emerging technologies: Robotic weed control using machine vision. Biosystems 
Engineering 83(2), 149–57. doi:10.1006/bioe.2002.0109.

Bradley, D., Thayer, S., Stentz, A. and Rander, P. 2004. Vegetation detection for mobile 
robot navigation. Tech. Rep. CMU-RI-TR-04-12. Pittsburgh, PA: Robotics Institute, 
Carnegie Mellon University.

Breiman, L., Friedman, J., Stone, C. J. and Olshen, R. A. 1984. Classification and Regression 
Trees. CRC Press.

Bulanon, D. M., Kataoka, T., Okamoto, H. and Hata, S. 2004. Development of a real-time 
machine vision system for the apple harvesting robot. SICE 2004 Annual Conference, 
4–6 August 2004, pp. 595–8, vol. 1.

Bulanon, D. M., Burks, T. F. and Alchanatis, V. 2009. Image fusion of visible and thermal 
images for fruit detection. Biosystems Engineering 103(1), 12–22. doi:10.1016/j.
biosystemseng.2009.02.009.

Canny, J. 1986. A computational approach to edge detection. IEEE Transactions on Pattern 
Analysis and Machine Intelligence 8(6), 679–98. doi:10.1109/TPAMI.1986.4767851.

Chang, C.-L. and Song, G.-B. 2017. Vision-based guidance control scheme for autonomous 
navigation of 4WDS agricultural vehicle in a narrow space environment. 2017 ASABE 
Annual International Meeting. St. Joseph, MI: ASABE.

Chang, C.-L., Song, G.-B. and Lin, K.-M. 2016. Two-stage guidance control scheme for high-
precision straight-line navigation of a four-wheeled planting robot in a greenhouse. 
Transactions of the American Society of Agricultural and Biological Engineers 59(5), 
1193–204. doi:10.13031/trans.59.11801.

Cho, S. I. and Ki, N. H. 1999. Autonomous speed sprayer guidance using machine vision 
and fuzzy logic. Transactions of the American Society of Agricultural Engineers 42, 
1137–43.



© Burleigh Dodds Science Publishing Limited, 2019. All rights reserved.

The use of agricultural robots in crop spraying/fertilizer applications 25

Conner, D. C., Greenfield, A., Atkar, P. N., Rizzi, A. A. and Choset, H. 2005. Paint deposition 
modeling for trajectory planning on automotive surfaces. IEEE Transactions on 
Automation Science and Engineering 2(4), 381–92. doi:10.1109/TASE.2005.851631.

Dasgupta, S., Meisner, C., Wheeler, D., Xuyen, K. and Thi Lam, N. 2007. Pesticide poisoning 
of farm workers–implications of blood test results from Vietnam. International 
Journal of Hygiene and Environmental Health 210(2), 121–32. doi:10.1016/j.
ijheh.2006.08.006.

Diago, M., Correa, C., Millan, B., Valero, C., Barreiro, P. and Tardaguila, J. 2012. Grapevine 
yield and leaf area estimation using supervised classification methodology on RGB 
images taken under field conditions. Sensors 12, 1698–706.

Diao, X. D., Zeng, S. X. and Tam, V. W. Y. 2009. Development of an optimal trajectory 
model for spray painting on a free surface. Computers and Industrial Engineering 
57(1), 209–16. doi:10.1016/j.cie.2008.11.010.

Edan, Y., Kondo, N. and Shufeng, H. 2009. Automation in agriculture. In: Nof, S. Y. (Ed.), 
Handbook of Automation. Berlin: Springer Verlag.

Elkabetz, P., Edan, Y., Grinstein, A. and Pasternak, H. 1998. Simulation model for evaluation 
of site−specific sprayer design. ASAE Annual International Meeting, Orlando, FL.

English, A., Ross, P., Ball, D. and Corke, P. 2014. Vision based guidance for robot navigation 
in agriculture. 2014 IEEE International Conference on Robotics and Automation 
(ICRA), 31 May–7 June 2014, pp. 1693–8.

From, P. J., Gunnar, J. and Gravdahl, J. T. 2011. Optimal paint gun orientation in spray 
paint applications-experimental results. IEEE Transactions on Automation Science 
and Engineering 8(2), 438–42. doi:10.1109/TASE.2010.2089450.

Gat, G., Gan-Mor, S. and Degani, A. 2016. Stable and robust vehicle steering control using 
an overhead guide in greenhouse tasks. Computers and Electronics in Agriculture 
121, 234–44. doi:10.1016/j.compag.2015.12.019.

Gazquez, J. A., Castellano, N. N. and Manzano-Agugliaro, F. 2016. Intelligent low cost 
telecontrol system for agricultural vehicles in harmful environments. Journal of 
Cleaner Production 113, 204–15. doi:10.1016/j.jclepro.2015.11.015.

Gerland, P., Raftery, A. E., Ševčíková, H., Li, N., Gu, D., Spoorenberg, T., Alkema, L., Fosdick, 
B. K., Chunn, J., Lalic, N., et  al. 2014. World population stabilization unlikely this 
century. Science 346(6206), 234–7. doi:10.1126/science.1257469.

Gil, E., Escol, A., Rosell, J. R., Planas, S. and Val, L. 2007. Variable rate application of plant 
protection products in vineyard using ultrasonic sensors. Crop Protection 26(8), 
1287–97. doi:10.1016/j.cropro.2006.11.003.

González, R. S., Rodríguez, F., Sánchez-Hermosilla, J. and Donaire, J. G. 2009. Navigation 
techniques for mobile robots in greenhouses. Applied Engineering in Agriculture 
25(2), 153–65. doi:10.13031/2013.26324.

Goudy, H. J., Bennett, K. A., Brown, R. B. and Tardif, F. J. 2001. Evaluation of site-specific 
weed management using a direct-injection sprayer. Weed Science 49(3), 359–66. 
doi:10.1614/0043-1745(2001)049[0359:EOSSWM]2.0.CO;2.

Guan, Y., Chen, D., He, K., Liu, Y. and Li, L. 2015. Review on research and application of 
variable rate spray in agriculture. IEEE 10th Conference on Industrial Electronics and 
Applications (ICIEA). IEEE, pp. 1575–80.

Hannan, M., Burks, T. and Bulanon, D. M. 2010. A machine vision algorithm combining 
adaptive segmentation and shape analysis for orange fruit detection. Agricultural 
Engineering International: CIGR Journal.



 The use of agricultural robots in crop spraying/fertilizer applications26

© Burleigh Dodds Science Publishing Limited, 2019. All rights reserved.

Harper, N. and McKerrow, P. 2001. Recognising plants with ultrasonic sensing for mobile 
robot navigation. Robotics and Autonomous Systems 34(2–3), 71–82. doi:10.1016/
S0921-8890(00)00112-3.

Hiremath, S. A., Van Der Heijden, G. W. A. M., Van Evert, F. K., Stein, A. and Ter Braak, C. J. 
F. 2014. Laser range finder model for autonomous navigation of a robot in a maize 
field using a particle filter. Computers and Electronics in Agriculture 100, 41–50. 
doi:10.1016/j.compag.2013.10.005.

Huang, Y., Hoffmann, C., Fritz, B. and Lan, Y. 2008. Development of an unmanned aerial 
vehicle-based spray system for highly accurate site-specific application. ASAE 
Annual International Meeting, Rhode Island.

Jeon, H. Y., Tian, L. F. and Grift, T. 2005. Development of an individual weed treatment 
system using a robotic arm. ASABE Annual International Meeting, Tampa, FL.

Jiang, G., Zhao, C. and Si, Y. 2010. A machine vision based crop rows detection for 
agricultural robots. 2010 International Conference on Wavelet Analysis and Pattern 
Recognition, 11–14 July 2010, pp. 114–18.

Kapach, K., Barnea, E., Mairon, R., Edan, Y. and Ben-Shahar, O. B. 2012. Computer vision 
for fruit harvesting robots–state of the art and challenges ahead. International 
Journal of Computational Vision and Robotics 3(1/2), 4–34. doi:10.1504/
IJCVR.2012.046419.

Komasilovs, V., Stalidzans, E., Osadcuks, V. and Mednis, M. 2013. Specification 
development of robotic system for pesticide spraying in greenhouse. 2013 IEEE 
14th International Symposium on Computational Intelligence and Informatics 
(CINTI), 19–21 November 2013, pp. 453–7.

Lameski, P., Zdravevski, E. and Kulakov, A. 2018. Review of automated weed control 
approaches: An environmental impact perspective. In: Kalajdziski, S. and 
Ackovska, N. (Eds), ICT Innovations 2018. Engineering and Life Sciences. ICT 2018. 
Communications in Computer and Information Science, vol. 940. Cham: Springer, 
pp. 132–47.

Lamm, R., Slaughter, D. and Giles, D. 2002. Precision weed control system for cotton. 
Transactions of the American Society of Agricultural Engineers 45, 231–8.

Lee, W. S., Slaughter, D. C. and Giles, D. K. 1999. Robotic weed control system for 
tomatoes. Precision Agriculture 1(1), 95–113. doi:10.1023/A:1009977903204.

Li, M., Imou, K., Wakabayashi, K. and Yokoyama, S. 2009. Review of research on agricultural 
vehicle autonomous guidance. International Journal of Agricultural and Biological 
Engineering 2, 1–16.

Luo, L., Tang, Y., Zou, Z., Wang, C., Zhang, P. and Feng, W. 2016. Robust grape cluster 
detection in a vineyard by combining the AdaBoost framework and multiple color 
components. Sensors 16, 2098–312.

Mandow, A., Gomez-De-Gabriel, J. M., Martinez, J. L., Munoz, V. F., Ollero, A. and Garcia-
Cerezo, A. 1996. The autonomous mobile robot Aurora for greenhouse operation. 
IEEE Robotics and Automation Magazine 3(4), 18–28. doi:10.1109/100.556479.

McCool, C. S., Beattie, J., Firn, J., Lehnert, C., Kulk, J., Bawden, O., Russell, R. and Perez, 
T. 2018. Efficacy of mechanical weeding tools: A study into alternative weed 
management strategies enabled by robotics. IEEE Robotics and Automation Letters 
3, 1184–90. doi:10.1109/LRA.2018.2794619.

Nishiwaki, K., Amaha, K. and Otani, R. 2004. Development of nozzle positioning system 
for precision sprayer. Automation Technology for Off-Road Equipment, Kyoto, Japan. 
Kyoto, Japan.



© Burleigh Dodds Science Publishing Limited, 2019. All rights reserved.

The use of agricultural robots in crop spraying/fertilizer applications 27

Oberti, R., Marchi, M., Tirelli, P., Calcante, A., Iriti, M., Tona, E., Hočevar, M., Baur, J., Pfaff, 
J., Schütz, C., et al. 2016. Selective spraying of grapevines for disease control using 
a modular agricultural robot. Biosystems Engineering 146, 203–15. doi:10.1016/j.
biosystemseng.2015.12.004.

Ogawa, Y., Kondo, N., Monta, M. and Shibusawa, S. 2006. Spraying Robot for Grape 
Production: Springer Tracts in Advanced Robotics. Berlin: Springer.

Pérez-Ruíz, M., Slaughter, D. C., Fathallah, F. A., Gliever, C. J. and Miller, B. J. 2014. 
Co-robotic intra-row weed control system. Biosystems Engineering 126, 45–55. 
doi:10.1016/j.biosystemseng.2014.07.009.

Pérez-Ruiz, M., Gonzalez-De-Santos, P., Ribeiro, A., Fernández-Quintanilla, C., Peruzzi, 
A., Vieri, M., Tomic, S. and Agüera, J. 2015. Highlights and preliminary results for 
autonomous crop protection. Computers and Electronics in Agriculture 110, 150–61. 
doi:10.1016/j.compag.2014.11.010.

Pergher, G. and Petris, R. 2008. Pesticide dose adjustment in vineyard spraying and 
potential for dose reduction. Agricultural Engineering International: The CIGR 
EJournal X.

Peteinatos, G. G., Weis, M., Andújar, D., Rueda Ayala, V. and Gerhards, R. 2014. Potential 
use of ground-based sensor technologies for weed detection. Pest Management 
Science 70(2), 190–9. doi:10.1002/ps.3677.

Pimentel, D. and Lehman, H. 1993. The Pesticide Question: Environment, Economics, and 
Ethics. London: Chapman & Hall.

Reid, J. F., Zhang, Q., Noguchi, N. and Dickson, M. 2000. Agricultural automatic guidance 
research in North America. Computers and Electronics in Agriculture 25(1–2), 155–
67. doi:10.1016/S0168-1699(99)00061-7.

Reus, J., Leendertse, P., Bockstaller, C., Fomsgaard, I., Gutsche, V., Lewis, K., Nilsson, 
C., Pussemier, L., Trevisan, M., Van Der Werf, H., et  al. 2002. Comparison and 
evaluation of eight pesticide environmental risk indicators developed in Europe and 
recommendations for future use. Agriculture, Ecosystems and Environment 90(2), 
177–87. doi:10.1016/S0167-8809(01)00197-9.

Rogan, W. J. and Chen, A. 2005. Health risks and benefits of bis (4-chlorophenyl)-1, 
1,1-trichloroethane (DDT). The Lancet 366(9487), 763–73. doi:10.1016/
S0140-6736(05)67182-6.

Rovira-Más, F., Reid, F. J. and Zhang, Q. 2006. Stereovision data processing with 3D density 
maps for agricultural vehicles. Transactions of the American Society of Agricultural 
and Biological Engineers 49, 1213–22.

Rovira-Más, F., Millot, C. and Sáiz-Rubio, V. 2015. Navigation strategies for a vineyard 
robot. ASABE Annual International Meeting, Orleans, LA.

Sa, I., Ge, Z., Dayoub, F., Upcroft, B., Perez, T. and McCool, C. 2016. DeepFruits: A fruit 
detection system using deep neural networks. Sensors 16(8), 1222. doi:10.3390/
s16081222.

Sahir Arikan, M. A. and Balkan, T. 2000. Process modeling, simulation, and paint thickness 
measurement for robotic spray painting. Journal of Robotic Systems 17(9), 479–94. 
doi:1 0.100 2/109 7-456 3(200 009)1 7:9<4 79::A ID-RO B3>3. 0.CO; 2-L.

Sharifi, M., Fathy, M. and Mahmoudi, M. T. 2002. A classified and comparative study of 
edge detection algorithms. International Conference Proceedings on Information 
Technology: Coding and Computing. IEEE, pp. 117–20.

Singh, S., Burks, T. F. and Lee, W. S. 2005. Autonomous robotic vehicle development for 
greenhouse spraying. Transactions of the American Society of Agricultural Engineers 
48, 2355–61.



 The use of agricultural robots in crop spraying/fertilizer applications28

© Burleigh Dodds Science Publishing Limited, 2019. All rights reserved.

Slaughter, D. C., Giles, D. K. and Downey, D. 2008. Autonomous robotic weed control 
systems: A review. Computers and Electronics in Agriculture 61(1), 63–78. 
doi:10.1016/j.compag.2007.05.008.

Song, Y., Sun, H., Li, M. and Zhang, Q. 2015. Technology application of smart spray in 
agriculture: A review. Intelligent Automation and Soft Computing 21(3), 319–33. doi:
10.1080/10798587.2015.1015781.

Steward, B. L., Tian, L. F. and Tang, L. 2002. Distance-based control system for machine 
vision-based selective spraying. Transactions of the American Society of Agricultural 
Engineers 45, 1255.

Strand, B. and Baerveldt, A. J. 2002. An agricultural mobile robot with vision-based 
perception for mechanical weed control. Autonomous Robots 13(1), 21–35. doi:10.
1023/A:1015674004201.

Swan, S. H., Kruse, R. L., Liu, F., Barr, D. B., Drobnis, E. Z., Redmon, J. B., Wang, C., Brazil, 
C. and Overstreet, J. W. 2003. Semen quality in relation to biomarkers of pesticide 
exposure. Environmental Health Perspectives 111(12), 1478–84. doi:10.1289/
ehp.6417.

Tellaeche, A., Burgosartizzu, X. P., Pajares, G., Ribeiro, A. and Fernández-Quintanilla, 
C. 2008. A new vision-based approach to differential spraying in precision 
agriculture. Computers and Electronics in Agriculture 60(2), 144–55. doi:10.1016/j.
compag.2007.07.008.

Toda, M., Kitani, O., Okamoto, T. and Torii, T. 1999. Navigation method for a mobile robot 
via sonar-based crop row mapping and fuzzy logic control. Journal of Agricultural 
Engineering Research 72(4), 299–309. doi:10.1006/jaer.1998.0371.

Vázquez-Arellano, M., Griepentrog, H. W., Reiser, D. and Paraforos, D. S. 2016. 3-D imaging 
systems for agricultural applications—A review. Sensors 16(5), 618. doi:10.3390/
s16050618.

Vitzrabin, E. and Edan, Y. 2016. Adaptive thresholding with fusion using a RGBD sensor 
for red sweet-pepper detection. Biosystems Engineering 146, 45–56. doi:10.1016/j.
biosystemseng.2015.12.002.

Vuong, V. L., Slaughter, D. C., Nguyen, T. T., Fennimore, S. A. and Giles, D. K. 2017. An 
automated system for crop signaling and robotic weed control in processing 
tomatoes. 2017 ASABE Annual International Meeting. St. Joseph, MI: ASABE.

Xue, J. and Xu, L. 2010. Autonomous agricultural robot and its row guidance. 2010 
International Conference on Measuring Technology and Mechatronics Automation, 
13–14 March 2010, pp. 725–9.

Zaidner, G. and Shapiro, A. 2016. A novel data fusion algorithm for low-cost localisation 
and navigation of autonomous vineyard sprayer robots. Biosystems Engineering 
146, 133–48. doi:10.1016/j.biosystemseng.2016.05.002.

Zhao, D. J., Zhao, Y., Wang, X. L. and Zhang, B. 2016. Theoretical design and first test in 
laboratory of a composite visual servo-based target spray robotic system. Journal of 
Robotics 2016, 1–11. doi:10.1155/2016/1801434.


	1 Introduction
	2 Challenges in current robotic sprayers
	3 Case study: robotic sprayers in vineyards
	4 Conclusion
	5 Future trends
	6 Where to look for further information
	7 References

