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Abstract— Bed-making is a common task well-suited for
home robots since it is tolerant to error and not time-critical.
Bed-making can also be difficult for senior citizens and those
with limited mobility due to the bending and reaching move-
ments required. Autonomous bed-making combines multiple
challenges in robotics: perception in unstructured environments,
deformable object manipulation, transfer learning, and sequen-
tial decision making. We formalize the bed-making problem as
one of maximizing surface coverage with a blanket, and explore
algorithmic approaches that use deep learning on depth images
to be invariant to the color and pattern of the blankets. We
train two networks: one to identify a corner of the blanket
and another to determine when to transition to the other
side of the bed. Using the first network, the robot grasps at
its estimate of the blanket corner and then pulls it to the
appropriate corner of the bed frame. The second network
estimates if the robot has sufficiently covered one side and can
transition to the other, or if it should attempt another grasp
from the same side. We evaluate with two robots, the Toyota
HSR and the Fetch, and three blankets. Using 2018 and 654
depth images for training the grasp and transition networks
respectively, experiments with a quarter-scale twin bed achieve
an average of 91.7% blanket coverage, nearly matching human
supervisors with 95.0% coverage. Data is available at https:
//sites.google.com/view/bed-make.

I. INTRODUCTION

A common home task is bed-making [4], which is rarely
enjoyed and can be physically challenging due to bending
and leaning movements. Surveys of older adults in the
United States [9], [3], suggest that they are willing to have a
robot assistant in their homes, particularly for physically
demanding tasks. Home robotics offers the potential to
provide treatment and care to senior citizens and people
with limited dexterity [5], [10]. Bed-making is a task well-
suited for home robots since it is tolerant to error and not
time-critical.

We formulate bed making as an optimization problem
where a robot grasps and then pulls at blanket corners to
maximize coverage over the bed frame. We focus on cases
when a blanket is fixed in two corners (called “mitred” in
hospitals [4], [32], [15]). The focus on corners as grasping
points has also been central to robotic manipulation of
towels [24] and laundry [27].

Detecting a suitable grasp point is challenging because the
blanket may be highly wrinkled. In addition, due to sensor
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Fig. 1: Example pairs of depth (top) and RGB (bottom) images from
three bed-making states of increasing coverage as seen through a
robot’s head camera sensors. Our system uses depth images to train
policies and generalizes to white, Cal-patterned, and teal blankets.

noise and imprecision in actuation, a grasp and pull on the
blanket may fail to adequately cover the bed frame.

We learn two policies parameterized by deep convolutional
neural networks: a grasp policy and a transition policy, both
of which receive as input a depth image of the bed from head
camera sensors. The grasp policy decides the (x, y) pixel
location of where to grab the blanket. The transition policy
decides if the blanket has sufficiently covered the frame, and
thus whether or not to try pulling the blanket again. Using
depth images allows both policies to generalize to blankets
with different colors and patterns, as shown in Figure 1.

We collect data from humans supervising the bed-making
task (see Section IV-C), and train both policies using deep
learning to map images to actions. To reduce data collection
and training time, we leverage a pre-trained RGB object
detection network, YOLO [34]. The policies are deployed on
two robots: the Toyota Human Support Robot (HSR) [13]
and the Fetch Robot [42], which both have a mobile base
and one arm equipped with a two-jaw gripper.

Results suggest that a neural network policy trained with
2018 depth images (of the white blanket) can achieve 91.7%
coverage, nearly matching performance of 95.0% when a
human selects grasp points. The policy also transfers to Cal-
patterned and teal blankets with 92.5% coverage, suggesting
robustness to varying blanket configurations and patterns.

This paper contributes: 1) a formalization of the bed-
making problem in terms of maximizing coverage, 2) deep
learning algorithms based on depth images to estimate grasp
points, making the system invariant to colors and patterns,
3) a procedure for collecting training data using RGB and
depth images to autonomously label grasp points, reducing
human effort, 4) experimental data with a quarter-scale twin
bed, two mobile robots, and three blankets.

This paper is a greatly expanded and revised version of an
earlier unpublished preprint [20].
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II. RELATED WORK

A. Assistive and Home Robotics
Recent research on assistive and home robotics in-

cludes [37], which designed a robotic bed equipped with
pressure sensors to anticipate the pose of a patient. Another
robotic system was developed in [28] which could lift patients
in and out of bed. Other recent capabilities include bed
wipes [16], and assisted dressing, feeding, and navigation [43],
[7], [31], [41]. Such work focuses on different aspects of
home robotics and is orthogonal to our contribution.

In the commercial setting, some “smart beds” such as
the Ohea [30] have the ability to make themselves, but these
systems are proprietary and not widely used, whereas a mobile
robot can be deployed to make different beds.

There has also been recent interest in using machine
learning to train home robots [12]. While [12] avoided
depth data due to cost, we utilize higher-quality robots and
generalize our preliminary bed-making task [20] by using
depth images available in our robot’s sensors, in a manner
similar to recent data-driven grasping methods [23]. To our
knowledge, this is the first paper on robot bed-making.

B. Manipulation of Deformable Objects
Manipulation of cloth has been explored in a variety of con-

texts, such as folding of laundry [27], [39]. For instance, [24]
used an algorithm based on identifying and tensioning corners
to enable a home robot to fold laundry, and [6] used a Hidden
Markov Model and deformable object simulator to bring
clothing into an arbitrary position. Additional techniques
for cloth manipulation range from tracking using point
clouds [36], learning from demonstrations [2], [21], and using
deep reinforcement learning in simulation [26].

In the surgical setting, the task of cutting tissue is similar
to the task of cutting cloth. For example, [29] examined
cutting a circle out of surgical gauze via leveraging expert
demonstrations, but the approach was highly hand-tuned and
suffered from imprecision of the optimal grasp points on cloth.
A more robust tensioning policy was developed in simulation
using deep reinforcement learning [40]. Such techniques,
however, rely on having an accurate simulator, which is not
generally available for deformable objects.

C. Behavior Cloning and Deep Learning
Supervised learning, in the form of behavior cloning, is a

popular imitation learning technique that has been applied
to a wide variety of tasks such as self-driving cars [33],
quadcopter flight [35], grasping in clutter [19], and virtual
reality teleoperation [44]; see [1] for a survey. Similarly,
to learn robust grasp and transition policies that generalize
across blanket configurations, we use deep convolutional
neural networks [18], [11]. To collect data, we use a human
to manually perform the task (not through teleoperation) by
repeatedly pulling a blanket and collecting images.

III. PROBLEM STATEMENT

A. Assumptions and Definitions
Robot. We assume a mobile robot with an arm, an end-
effector, and color and depth cameras. We assume it is able
to reach at least anywhere on the half of the bed closest to

Fig. 2: A top-down view of the setup for one rollout. A robot (in this case,
the HSR) starts on Side A and executes the grasp and transition policies for
that side. Then, it traverses to Side B to mirror the scene over the y-axis,
and again deploys the policies. It terminates after finishing Side B.

its position. We additionally assume that blanket corners are
reachable and visible from head sensor cameras.
Bed. A bed is composed of a frame and a blanket. The frame
is a rigid rectangular 3D structure with dimensions WF ×
HF × LF . The physical space occupied by the top surface
of the frame is a 2D xy-plane. The blanket is deformable
cloth and can be characterized with an occupancy function
ξ : R3 → {0, 1} to determine if a 3D point is part of the
blanket or not. Here, ξ represents the blanket configuration;
let Ξ be the space of all possible configurations. As the bed
frame is fixed and known, ξ is sufficient to express the state.

We additionally define the function fξ(x, y) to be the height
of the highest point of blanket ξ at location (x, y) of the
top surface plane, or 0 if the (x, y) point is uncovered. This
naturally leads to the top envelope Eξ of the blanket to be
the set of visible points of the blanket from a top-down view:

Eξ =
{

(x, y, fξ(x, y)) : fξ(x, y) > 0, x ∈ X̃, y ∈ Ỹ
}

(1)

where X̃ = [x1, x2] and Ỹ = [y1, y2] represent appropriate
coordinate ranges over the top surface plane.

B. Objective

We benchmark the bed-making objective in terms of surface
coverage of the blanket ξ over the top surface of the bed.
Denoting the function c : ξ → [0, 1] which computes the
percentage of the top surface covered by the blanket, our
objective is to maximize the coverage:

maximize
ξ∈Ξ

c(ξ). (2)

Given a blanket configuration ξ, the problem of finding an
optimal grasp point can be formulated as finding the point
(x, y, fξ(x, y)) ∈ Eξ such that coverage is maximized when
the neighborhood of points about it on Eξ are gripped and
pulled to the uncovered corner nearest to the robot.

IV. SETUP AND METHODOLOGY

Our proposed algorithm involves a robot pulling at a corner
of the blanket to the side nearest to it (using multiple attempts
if needed), and then moving to the other side of the bed and
repeating the process. See Figure 2 for one rollout.



Fig. 3: Examples of images for training the transition network. First column:
an unsuccessful case. Second column: a successful case. Third column: (on
the other side of the bed) a borderline case which could be either depending
on a human’s preferences; we labeled this as a failure. The transition network
must also operate when the robot is on the second side of the bed (e.g., as in
the third column). In addition to borderline cases, the task can be challenging
due to differences in viewpoints and varying human predilections.

A. The Robots and The Bed
We use two mobile robots, the HSR and the Fetch, to

evaluate the generality of this approach. The HSR [13] has
an omnidirectional base [22] to allow joint planning with its
4 DoF base and 3 DoF arm. The Fetch [42] has a longer 7
DoF arm and a differential drive base. Both robots have head
camera sensors which can return depth and RGB images.

We use a quarter-scale bed frame with dimensions WF =
67 cm, HF = 45 cm, and LF = 91 cm. The bed consists of
one blanket with size slightly larger than the frame so that a
human could comfortably cover it. One end of the blanket is
fixed to one of the shorter sides of the bed frame to simulate
two corners being tucked under a mattress.

B. Grasp and Transition Policies
To maximize bed frame coverage (Equation 2), the robot

learns to grasp at one of two corners of the blanket,1 and
then pulls it towards the appropriate corner of the bed frame.
In addition, to be robust to failure, we also propose that the
robot learn whether to retry pulling the blanket or to transition
to the other side of the bed. These involve learning policies
that act on observations ot ∈ R640×480×3 at time t, which
are depth images from the robot’s head camera sensors.

We define a grasp policy πθG : R640×480×3 → R2

parameterized by θG as a mapping from ot to a pixel position
u

(G)
t = (x, y) in ot where the robot will grasp. This point can

be converted into a 6 DoF gripper pose by projecting it onto
the 3D scene using depth values from the corresponding depth
image, and then incorporating known camera parameters [14]
for a target position. This does not specify the orientation of
the gripper, but since the position of the bed frame is known,
the gripper rotates to be orthogonal to the bed.

Let the transition policy be πθT : R640×480×3 → {0, 1}
parameterized by θT , which maps ot to a binary decision
u

(T )
t ∈ {0, 1} as to whether it should transition to the other

side; equivalently, whether the prior grasp succeeded.
The two policies interleave with each other as follows. At

the initial side, once the grasp location has been determined,
the robot moves its (open) gripper to the location, closes

1Assigning corners as grasping points differs from our earlier preprint [20]
and has the advantage of accelerating data collection for training policies,
since a corner can be automatically labeled with a color marker.

it, and then pulls towards the nearest uncovered corner of
the bed. Afterwards, the robot checks whether its action
was successful. Due to blanket properties and the stochastic
nature of actions, a re-grasp may be necessary. Examples
of successful and failed grasps are shown in Figure 3. To
decide whether the robot should retry at time t, it queries the
transition policy πθT and receives a binary signal u(T )

t . Once
the robot receives the signal that the blanket is sufficiently
stretched on one side, it moves to the other side and repeats.

C. Data Collection

We use supervised learning to train πθG and πθT . The grasp
policy needs to detect corners from depth images, which can
be difficult to determine analytically due to the deformable
nature of blankets. For the transition policy, while one could
define it by using a marker on the bed frame and running a
test to see whether it is visible or covered, markers will not
be available in general. Moreover, a blanket may technically
cover a marker but still look unkempt according to a particular
human’s tastes, motivating the need for a trainable policy.

To collect training data for πθG , we use a white blanket
with a red corner marker. For sampling the initial state,
we keep two blanket ends fixed to the bed and then toss
the remaining part onto the bed. We re-toss if the nearest
blanket corner is not visible or unreachable from the robot’s
position, which can be viewed as rejection sampling to find a
valid initial state. Figure 4 shows representative initial states,
which are substantially more diverse than those in our earlier
preprint [20] which was limited to using a single fold.

Given the initial state, we then manually perform short pulls
of the blanket and collect a dataset DG = {(oi,u(G)

i )}Ni=1

for training the grasp policy, occasionally re-tossing the
blanket as needed. Labels u

(G)
i correspond to pixels of

the red marked corner location in oi and are automatically
annotated from the RGB images. While performing bed-
making demonstrations, we simultaneously obtain a smaller
dataset DT = {(oi,u(T )

i )}Mi=1 for training the transition
policy, which requires manual human labeling for the binary
outcomes u

(T )
i . This process resulted in 2018 and 654 data

points for training the respective grasp and transition policies.

D. Training Neural Network Policies

We parameterize πθG and πθT with separate deep convo-
lutional neural networks. As in our earlier work [20], for
both policies we use an architecture based on YOLO [34],
a popular real-time object detection network. An advantage
of using YOLO is speed; it is fast compared to other object
detection methods, which is ideal for real-time control tasks.

We utilize pre-trained weights optimized on Pascal VOC
2012 [8]. This is due to the potential for transfer learning [38]
since the task of detecting a grasp point has similarities
with detecting a bounding box in 2D space and providing
a classification label. We call this network YOLO Pre-
Trained; see Figure 5 for an overview. We fix the first 32
million parameters from YOLO and optimize two additional
convolutional layers and two dense layers. We also apply data
augmentation techniques, such as a flip about the vertical
axis to simulate being on the opposite side of the bed, to get
10x more training data. The parameters of πθG and πθT are



Fig. 4: Examples of initial states. The grasp and transition policies are trained with depth images (top row, with corresponding RGB images below). The
grasp network training data is automatically labeled with the red marker from the RGB image. To avoid background noise, we black out regions beyond a
validation-tuned depth value. During testing, we use the same white blanket along with a Cal and a teal blanket (see Section V). The initial states are
substantially more diverse than those in our earlier preprint [20]; see the supplementary material for additional examples.

Fig. 5: The network architecture we used for grasping and transitioning.
From a (448× 448× 3)-sized input image, we use pre-trained weights to
obtain a (14×14×1024)-sized tensor. Then, we optimize two convolutional
and two dense layers, resulting in about 17 million adjustable parameters.
Notation: “s” indicates stride, and two crossing arrows are a dense layer.

optimized via Adam [17] by minimizing the L2 and binary
cross-entropy losses, respectively.

Since YOLO Pre-Trained uses weights that were trained on
RGB images and our task uses depth images, we additionally
tested full training of YOLO without fixing the first 32 million
parameters, but found this to lead to worse performance
with more than double the L2 pixel error. Full training
details and comparisons with alternative training protocols
and architectures are in the supplementary material.

V. EXPERIMENTS AND POLICIES

We perform experiments to test: 1) neural network archi-
tectures and training procedures, 2) robustness of the learned
policies to different robots and different blankets, and 3)
comparisons of learning versus an analytic baseline.

A. Neural Network Training Results
We trained the grasp and transition networks over data

from Section IV-C, with hyperparameters determined via 10-
fold cross validation. Figure 6 demonstrates training results
of the grasping network over the best hyperparameter set. It
shows the L2 pixel prediction losses (over each data point
when it was in a validation set fold) as a function of training
epoch, showing that it converges to roughly 27.4 pixel error.

Figure 6 also presents a scatter plot of the the distribution
of training points (i.e., blanket corners) and a heat map of
those points and their held-out L2 losses (again, in pixels)
for the best-performing validation set iteration. As expected,
the heat map generally shows darker regions towards the
extremes of the dataset, particularly to the left and bottom.
These correspond to when blanket corners are far away from
the frame target or close to the edge of the top surface.

Transition Network 0.5 Ep. 1 Ep. 5 Ep. 10 Ep.
YOLO Pre-Trained 635/654 643/654 645/654 648/654

TABLE I: Classification accuracy of the transition network as a function
of training epoch (over augmented data). We used 654 real images, and
performance is based on the sum of 10 cross validation folds.

Table I shows results for the transition network. When
trained on 654 data points with an equal distribution of
successful and failure cases, YOLO Pre-Trained quickly
achieves near-perfect performance to about 648/654 correct.
Incorrectly classified images tend to be “borderline” cases
which could reasonably be considered either a success or
failure. When deployed in a home, such a network could be
tuned to a particular human’s preferences.

B. Baseline Policies: Human, Highest-Point and RGB
We compare our proposed method using YOLO Pre-Trained

with two grasp policies: a human selecting grasp points via a
click interface and an analytic baseline where the robot grips
the highest reachable point (x, y, fξ(x, y)) ∈ Eξ of the bed.
These comparisons help us in characterizing the difficulty
of our setup, in quantifying the improvement of using Deep
Learning as opposed to analytic policies, and in seeing how
close a trained policy can match a human supervisor.

The analytic policy is a strong baseline. The highest point
can correspond to a corner fold, in which case the policy will
do well since grasping near corners almost always results in
excellent coverage. Even if the highest point is not the corner,
blankets can stretch (e.g., Figure 7) and the pull flattens the
nearby region of the blanket and may make the subsequent
highest point closer to the blanket corner.

For testing transfer to Cal and teal blankets (see Figure 8),
we also benchmark our depth-based policy with a policy
trained on RGB images of the white blanket. Other than
the training data change, this RGB-policy was trained in an
identical manner as the depth policy.

C. Policy Evaluation Procedure
We test the depth-based neural network, human, and

highest-point grasp policies on the same white blanket from
training using the HSR and the Fetch. In addition, we use
the HSR to test transfer learning to different blankets and
compare with the RGB-based policy.

We report average coverage per rollout, which involves
grasping and pulling at the two longer sides of the bed. Before



Fig. 6: Left: validation set L2 errors (in pixels) when training the grasp policy on depth data. The curve is averaged over 10-fold cross validation runs, with
one standard deviation shaded. Middle: a scatter plot showing the distribution of corners (i.e., grasp points) in our combined data of 2018 images. Right:
heat map performance of YOLO Pre-Trained on the data, where each of the 2018 points was part of a validation test due to 10-fold cross validation. We
report results for the best validation-set performance for each of the 10 models. The heat map is based on L2 error in pixel space. Both subplots are
overlaid on top of an image of the bed that has a similar viewpoint as to what the robot would see during rollouts.

Fig. 7: The analytic baseline can often do reasonably well because the
white blanket is smooth and stretchy. While the initial pull above achieves
reasonable coverage, it covers a blanket corner and makes it harder for
subsequent grasps and pulls to make nontrivial coverage progress.

Fig. 8: Three blankets we use for evaluation. Left: white, used for data
collection with a red corner. Center: Cal, with non-homogeneous patterns.
Right: teal, with a thin white blanket pinned underneath it.

each rollout, we toss a blanket for the initial state and then
randomly choose the policy to use, to avoid human bias
in making easier setups for the depth-based neural network
policy. In addition, for all experiments, we use the same
transition neural network policy πθT for consistency. Finally,
we allow up to four grasp and pull attempts per side.

For evaluating blanket coverage, we measure the area of
the top of the bed frame and the area of its uncovered portion
using a top-down camera image.

VI. BED-MAKING RESULTS

A. Coverage

For each experimental condition, we execute between 12
and 24 rollouts with different initial blanket setups. Figure 9
shows exact rollout counts, along with average initial and
final coverage results.2

The results suggest that the neural network policy on the
white blanket, which attains 93.2±6.6 and 89.8±9.1 percent
coverage for the HSR and Fetch, respectively, outperforms the

2We use initial coverage to understand relative coverage gain, but it is not
a perfect metric of task difficulty because a blanket can cover the majority
of the frame but have corners in difficult-to-reach locations.

analytic baseline which achieves 84.6± 7.7 and 80.5± 14.7
coverage. We ran a Mann-Whitney U test [25] to compare
coverage on the white blanket among the analytic and learned
policies for the HSR (24 rollouts each), and obtained a p-value
of p = 0.00034, strongly suggesting statistically significant
differences. See the supplementary material for more details.

The trained grasp policy is nearly as good as the human
supervisor which gets 96.4±4.3 and 92.8±10.2. These results
are consistent among the two robots, providing evidence of
the robot-to-robot transfer capability of our method.3

For transfer to Cal and teal blankets, the HSR gets
91.7±5.3 and 93.3±5.0 coverage, respectively. These results
indicate that a neural network grasp policy trained on depth
images (of the white blanket) directly transfers to two other
blankets despite slightly different material properties; the Cal
blanket is thinner, while the teal blanket does not stretch as
much and has a thin white sheet pinned underneath it.

From Figure 9, we also observe that the RGB-based policy
(for the HSR) only obtains 85.5± 8.1 and 86.2± 8.4 percent
coverage on the Cal and teal blankets, showcasing the limits
of RGB-based transfer. Empirically, we observe that the RGB-
based policy consistently grasps the Cal blanket close to its
center. For the Teal blanket, it tends to grasp anywhere along
the exposed white underside, or near the center if there is
no white visible. These are inferior policies as compared to
grasping at corners.

B. Policy Visualization
Figure 10 shows example RGB images from the robot’s

sensors in one rollout when it was using the depth-based
policy (i.e., it only used depth for decision-making) with the
teal blanket. The initial prediction was correctly near a corner,
but the robot was unable to pull the blanket all the way to
the frame corner due to friction and a “weak” grip which
had an offset that was slightly too high and thus barely held
the corner. This resulted in the blanket corner off to the side,
as shown in the top right image.

When this happens, our learned policy tends to predict
points close to the blanket corner but which are on top of
the bed. This is a reasonable policy and allows the robot to

3When pooling together HSR and Fetch results, we get 91.7% and 95.0%
coverage for the learned policy and human supervisors, which are the values
reported in the abstract and in Section I.



Fig. 9: Initial and final coverage results, grouped together, under setups as outlined in Sections V-B and VI-A. Left: results with the HSR (blue) and Fetch
(red) for the white blanket. Human: human selecting grasp points. Analytic: the highest reachable point policy. Learned: depth-based (from white blanket)
neural network grasp policy. Right: HSR-only coverage results testing blanket transfer. RGB-to-Cal and RGB-to-Teal: the RGB-based grasp policy on Cal
and teal blankets. Depth-to-Cal and Depth-to-Teal: depth-based neural network grasp policy (same as in Learned) on Cal and teal blankets. Bars report
averages and one sample standard deviation across the number of rollouts listed in the x-axis labels, which also reports the final coverage.

Fig. 10: Examples of images from the robot’s sensors as it executes the
trained grasp (and transition) policies; we use RGB for clarity but the robot
only used depth images in this rollout. Predictions from the grasp network
are shown with a red cross hair. Top row: initially, the robot correctly picks
a corner but doesn’t manage to pull the blanket all the way due to friction,
and the corner is not on the top of the bed. The robot makes incremental
coverage progress in the subsequent grasp attempt. Bottom row: on the
second side, it correctly predicts the corner and only needs one grasp and
pull attempt.

make incremental coverage in future attempts. On the other
side, the policy also predicted near a corner, but the robot
was able to grip it firmly and did not need additional grasp
attempts.

C. Length and Timing
With up to four grasp attempts each side, there are a

maximum of eight attempts per rollout. On the white blanket
rollouts, the highest-point baseline required an average of 6.2
and 4.9 grasp attempts for the HSR and Fetch, respectively,
compared to 4.4 and 4.3 for the learned policy, and 2.8 and 3.0
for the human supervisor. The baseline took longer because it
often covered the blanket corner during the first pull and did
not achieve sufficient coverage (e.g., as in Figure 7). Thus,
the learned transition policy would tell the robot to re-attempt
a grasp and pull, yet the subsequent grasps made minimal
coverage progress.

We performed experiments on a single workstation with an
NVIDIA Titan Xp GPU, and timed three major components of
each rollout: moving to another side of the bed, physical grasp
execution, and neural network forward passes. These required
an average of 32.1, 17.7, and 0.1 seconds for the HSR,
and 28.9, 87.9, and 0.1 seconds for the Fetch, showing that
movement and grasping speed are the main time bottlenecks.

D. Limitations With Corners
We assume blanket corners are visible and on the top

surface in the initial state. This assumption may get violated
in subsequent states. For example, in Figure 7 the robot pulled
the blanket over the corner, and in Figure 10 the corner is off
to the side in the top right image. When these cases occur, as
mentioned in Section VI-B, the grasp network typically picks
a point somewhere along the edge of the blanket on top of
the bed frame, such as in the top right subplot of Figure 10.

This can make incremental coverage in some cases, but if
the top envelope Eξ of the blanket near the blanket corner
region is relatively smooth, such as in Figure 7, the grasping
policy will normally be unable to make further coverage
progress on that side of the bed.

VII. CONCLUSIONS AND FUTURE WORK

This paper uses supervised learning to teach mobile robots
to make a bed across multiple blanket configurations and
colors. There are a number of future work directions, such
as extending the method for application to furniture covers,
table cloths, and other deformable objects commonly seen
in homes. An additional extension is to develop policies that
can pull out and reveal hidden or unreachable corners.
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APPENDIX I
BED-MAKING AS AN MDP

The bed-making problem can be formalized as an MDP
M = 〈Ξ,A, P, ρ0, R, γ〉 where

1) Ξ is the set of possible states, where state ξt ∈ Ξ is
the blanket configuration at time t.

2) A is the set of possible actions, where each action
at ∈ A is a tuple at = (u

(T )
t ,u

(G)
t ) which consists of

the binary signal u(T )
t ∈ {0, 1} indicating whether the

robot should move to the other side of the bed, and
the 2D grasp point u(G)

t ∈ R2 as subsequently viewed
through the robot’s cameras.

3) P : Ξ × A × Ξ → R is the transition probability
distribution (not to be confused with the transition
network policy πθT ) in which p(ξt+1|ξt, at) gives the
next state given that the robot was at ξt and took
action at. This is difficult to accurately model due
to specifying the next blanket configuration.

4) R : Ξ × A × Ξ → R is the reward function (e.g.,
see Equation 4) where R(ξt, at, ξt+1) gives the reward
obtained after the robot, at state ξt, executes action at
and lands in ξt+1.

5) ρ0 is the initial state distribution, which gives the
probability of ξ0 ∈ Ξ being drawn.

6) γ ∈ [0, 1] is the discount factor.

The states are Markovian because we assume a sufficient
time interval to make the blanket stationary after each grasp
and pull, so there is no “momentum” from prior actions.
Our proposed solution (described in Section IV) uses grasp
πθG and transition πθT networks, which is compatible with
the action formulation since it implicitly encodes moving to
another side as needed. In the formulation here, the movement
comes first in the action tuple since the blanket state does
not change in the process of the robot transitioning, whereas
it (almost always) changes after a grasp and pull attempt.

We assume that the agent can position itself on one side
to get a sufficiently expressive view of the frame and blanket.
Technically, some parts of the blanket state ξt are not visible
(e.g., material that folds underneath another layer) and the
robot must make its decisions based on the observation
ot. The information that is hidden from ot, though, is not
relevant for determining the rewards R and transition model
P . Therefore, even though the robot cannot specify every
detail of the blanket, the bed-making setup is still an MDP
and not a POMDP.

One can attempt to construct a reward function that would
roughly reflect our procedure of grasping and transitioning.
As a start, given current coverage c(ξt) at time t (where
c(ξt) ∈ [0, 1]), we can measure the reward of taking action
at by relative coverage gain c(ξt+1) − c(ξt). This would
take into account that we want the robot to efficiently pull a
blanket to one corner before moving to another (in as few
grasp and pull attempts as possible).

One issue that arises, though, is if higher relative coverage
gain can be attained by moving to the other side of the bed
before the current side has been sufficiently stretched. Hence,
we can add a negative reward function T if the agent has to

Hyperparameter Value
L2 Regularization 0.0001
Adam Learning Rate 0.0001
Batch Size 64
Training Epochs 12
Leaky ReLU α 0.1

TABLE II: Hyperparameters used for the final trained grasp networks, based
on YOLO Pre-Trained. The transition network used the same hyperparameters
as listed here, except with 16 training epochs (its dataset is smaller).

transition to another side,

T (at;λ1) = T
(

(u
(T )
t ,u

(G)
t );λ1

)
= λ1 · I

(
u

(T )
t

)
, (3)

where I is an indicator function equal to one if the value
inside is one (and zero otherwise) and λ1 < 0 is a constant.
This would remove the incentive to go back and forth across
sides to obtain larger relative rewards, though the reward
cannot be so negative that the agent never has an incentive
to transition to the other side to get higher coverage. Hence,
we can have

R(ξt, at, ξt+1) = (c(ξt+1)− c(ξt)) + T (at;λ1) (4)

for c(ξt) ∈ [0, 1] and an appropriate value of λ1 < 0.

APPENDIX II
TRAINING DETAILS

For training grasp policies πθG , all observations ot ∈
R640×480×3 are scaled to be (448, 448, 3) and then passed
to the YOLO Pre-Trained network. We additionally scale the
grasp labels to be in the range of [−1, 1], to better condition
the optimization.

We tried dropout and/or batch normalization on the last
fully connected layer, but found this to be no better than
training without it. Hence, we do not use either regularization
technique. We use Adam for optimization; as an alternative,
we tried Stochastic Gradient Descent with an exponential
moving average for weight updates, but found that to lead to
consistently worse performance. Full hyperparameter details
for our final model are in Table II.

The grasp and transition networks were benchmarked via
10-fold cross validation to find when the training loss reached
rough convergence, and then the training was re-done for a
similar number of steps but with all the folds used in the
training data.

During training, we apply extensive data augmentation
techniques. We double our dataset by reflecting the image
around the vertical axis. Intuitively, this transformation helps
because a vertical flip creates an image that has the perspective
similar to the opposite side of the bed. For depth images, we
also apply changes by:
• adding uniform noise
• adding Gaussian noise
• adding black dots randomly
• adding black and white dots randomly
These techniques result in a 10x larger training set.

APPENDIX III
ADDITIONAL TRAINING EXPERIMENTS

In addition to YOLO Pre-Trained, we test with the same
YOLO-based architecture, but without fixing the first 32



Fig. 11: An alternative neural network architecture we tested, called
Augmented AlexNet. We use three groups of convolutional and max-pooling
layers. Two dense layers conclude the network, which has about 18 million
parameters. Notation: converging arrows are 2x2 max-pooling layers, crossing
arrows are dense layers, and “s2” means a stride of 2, with stride 1 as the
default.

Fig. 12: Performance of YOLO Pre-Trained and YOLO Fully-Trained on a
subset of the full grasping data we used. Curves are averaged over 10-fold
cross validation runs.

million parameters. This is to test if there are limits to transfer
learning since the pre-trained weights are from an RGB-based
dataset, and our task uses depth images. In this network,
which we call YOLO Fully-Trained, we initialize the weights
using the same pre-trained weights and follow the same
hyperparameters as YOLO Pre-Trained.

Due to the high computational and memory requirements
of training YOLO Fully-Trained, we test the two training
protocols on a subset which is 25% of the size of our full
data of 2018 grasp points. The loss curves from 10-fold cross
validation, shown in Figure 12, strongly suggest that YOLO
Pre-Trained is better for our task, since YOLO Fully-Trained
struggles to get below 120 pixels in L2 error.

We additionally test a second network architecture based
on a variation of AlexNet [18] where we add several more
convolutional layers between the pooling layers, but use a
smaller number of layers compared to YOLO. We test this
architecture in case the large number of layers and parameters
(including the pre-trained portion) was causing YOLO Pre-
Trained to overfit, and in case it would be better for the
transition network, which does not involve detection. We call
this alternative network Augmented AlexNet; see Figure 11
for an overview. It contains a comparable amount of trainable
parameters as YOLO Pre-Trained.

Fig. 13: Performance of neural network grasp policies, measured in terms of
L2 pixel error on validation sets for our full grasp dataset of 2018 data points.
Results compare YOLO Pre-Trained with Augmented AlexNet. Curves are
averaged over all 10 cross-validation folds. The results show a clear benefit to
using pre-trained features versus end-to-end training of Augmented AlexNet.
Results are also consistent across different folds.

Transition Network 0.5 Ep. 1 Ep. 5 Ep. 10 Ep.
YOLO Pre-Trained 635/654 643/654 645/654 648/654
Augmented AlexNet 607/654 612/654 613/654 632/654

TABLE III: Performance of the Augmented Alex-Net transition network as
a function of training epoch (over augmented data). The evaluation setup is
identical to that of Table I.

Figure 13 reports training results on our full grasping data
of 2018 points. The results indicate a clear benefit to utilizing
pre-trained weights, as Augmented AlexNet is consistently
worse. Hence, we do not use it for deployment.

Performance of the Augmented AlexNet transition network
is shown in Table III. Augmented AlexNet requires about
10 epochs to obtain equivalent performance of YOLO Pre-
Trained after half an epoch (see Table I), suggesting that
using pre-trained features for YOLO is beneficial even when
the task is classification (i.e., determining a success versus
failure) rather than detection.

Due to these results, we use YOLO Pre-Trained for both
the grasp and transition networks for deployment.

APPENDIX IV
DETAILS OF THE GRASP POLICY

In order to make bed making cool again, the grasp policy
needs to be carefully designed. Given an image ot at time
t, the grasp policy πθG must select a 2D pixel location
πθG(ot) = u

(G)
t = (x, y) for the robot to grasp the blanket.

We can project this point onto the 3D scene by first measuring
the depth value, z, from the corresponding depth image. The
z is determined via the median value of points in a 10× 10
bounding box centered around (x, y). Depth images can have
some missing data (i.e., NaN elements) due to noise, so
when computing the median, we ignore any such points in
the bounding box. The (x, y, z) are then projected onto the
scene using known camera parameters to form a 3D target.
In addition, since the position of the bed frame is known, we
can rotate the gripper to be orthogonal to the bed.

Once the grasp location has been determined, the robot
moves its open gripper to the location, closes the gripper, and



Fig. 14: Left: the RGB-based grasping policy selects a grasp point at a spot
in the lower left and somewhat far from the actual blanket corner. Right: after
grasping and pulling, the RGB-based policy continues to pick points near the
lower-center portion of the blanket, which results in no additional coverage
for that side. The grasping point determined from the RGB-based policy
network is shown with the red cross hair. See Figure 15 for a third-person
view of the robot when it executes the grasp at the image to the right.

then pulls towards the nearest un-covered corner of the bed
(i.e., the one on the same side as the robot). After this action,
the transition policy — which might be a learned transition
policy as we use in the main text — may determine that the
blanket has not been sufficiently made at the robot’s side.
This may happen for a myriad of reasons:

1) Poor grasp targets. The grasp location may simply be
unsuitable for sufficient coverage, such as if it misses
touching the blanket entirely, or if it grips a spot far
from its corner.

2) Force limits. The robot may experience high force at its
gripper during the process of pulling a (closed) gripper
towards the bed frame corner. This might happen if,
for instance, the robot has to move the gripper through
a particularly wrinkled region of the blanket. We hand-
tune a force limit and automatically open and release
the gripper if the force exceeds the threshold.

3) Inaccurate gripper offset height. The robot may occa-
sionally close its gripper at a location slightly too high
or too low. To avoid mechanical failures with gripping
the hard bed frame, we set the height offset of the
gripper so that it favors slightly higher grasps. If the
grasp was too high and missed grabbing the blanket,
we can often detect this by measuring the similarity in
images before and after the grasp attempt,4 and if the
similarity exceeds a threshold, we add an extra offset
to move the grasp target closer to the bed.

For these reasons, we allow for multiple grasp and pull
attempts per bed side, since subsequent grasps can often
improve coverage. We use a maximum of four as that
empirically provided a reasonable balance between attaining
sufficient coverage without taking an undue amount of time.

APPENDIX V
ADDITIONAL BED-MAKING ROLLOUT RESULTS

A. RGB Policy Observations
The grasping policy trained on RGB images of the white

blanket (with the marked corner) has difficulty transferring
to other blankets, particularly the Cal blanket which has
substantially different color patterns. A typical case in a bed-
making rollout is shown in Figure 14, where the RGB-based
grasping policy tends to pick points roughly in the lower

4We use the L2 norm and structural similarity metrics.

Fig. 15: A third-person view of the HSR when it attempts to conduct a
grasp and pull at the point shown in the second image in Figure 14. This
is an example of how a grasp and pull attempt may not increase coverage.
From the third-person view, the corner of the Cal blanket is to the top left
in both images above, yet the robot is gripping towards the top center of
the blanket (left image). The resulting grasp and pull (right image) fails to
noticeably move the blanket as that area is already relatively smooth.

Component Mean Time (Sec.) Quantity
Moving to a Side 32.1± 1.5 144
Grasp Execution 17.7± 2.2 706
Neural Network Pass 0.1± 0.2 982
Moving to a Side 28.9± 21.5 49
Grasp Execution 87.9± 19.1 201
Neural Network Pass 0.1± 0.2 82

TABLE IV: Timing results of bed-making rollouts for the HSR (top three
rows) and Fetch (bottom three rows), all in seconds along with standard
deviation and the total quantity of data points measured. Moving to a Side:
moving from one side of the bed to another upon completion, happens
twice per trajectory. Grasp Execution: the process of the robot moving its
end-effector to the workspace and pulling to a target. Neural Network Pass:
the forward pass through the grasping and success networks.

portion of the blanket, between the fixed corner (of the bed
frame) to the lower left and to how far the blanket extends
along the frame edge to the un-covered corner. This makes
sense since corners are often in that region in the training
data images.

A grasp and pull at that target results in some initial cover-
age. Afterwards, though, the RGB-based policy consistently
picks points near the central portion of the edge, which is
already flat and and therefore results in negligible additional
coverage for that side. (The robot may attain more coverage,
though, after it hits the maximum of four attempts on the
side and transitions to the other). The depth-based grasping
policy generalizes better; if a corner is off to the side, the
policy usually picks near the closest blanket point on the
edge of the top of the bed, which results in better coverage
than points near the blanket center.

Figure 15 shows a third-person view of the setup after the
first grasp and pull in Figure 14. The robot keeps grasping
at the middle of the bed edge, but since the blanket there is
already flat, there is little additional coverage.

B. Timing Results

We list timing results (in seconds) in Table IV for three
major components of the trajectory. The reported numbers
combine all relevant trials from Figure 9. The major bot-
tlenecks of bed-making rollouts are for moving to another
side, which required 32.1 and 28.9 seconds for the HSR and
Fetch, respectively, and grasp execution, which took 17.7
and 87.9 seconds, respectively. In contrast, due to our fast
single-shot CNN, the neural network forward passes took just
0.15 seconds on average.



Trial Human Analytic Learned RGB-to-Cal Depth-to-Cal RGB-to-Teal Depth-to-Teal
1 58.5 94.3 50.4 89.6 49.9 95.2 38.0 83.8 63.2 94.8 42.1 81.0 52.3 92.3
2 56.1 93.2 50.1 83.8 53.5 98.0 45.6 89.3 43.9 94.8 39.9 88.0 47.3 95.4
3 46.1 99.2 30.1 68.0 35.7 73.3 50.0 82.8 42.5 96.0 43.1 98.1 34.3 76.4
4 39.2 96.4 31.6 76.8 32.0 97.4 43.9 78.3 51.3 95.3 53.2 74.0 37.1 97.8
5 33.1 98.3 33.4 79.2 39.3 84.1 54.7 79.7 42.0 95.1 42.1 76.5 40.0 95.8
6 30.8 97.0 33.7 74.9 42.5 97.3 43.3 76.0 37.0 85.5 46.0 89.5 41.8 93.0
7 46.7 100.0 41.9 79.9 42.2 81.8 46.9 91.8 51.6 76.9 55.6 82.9 45.7 84.4
8 43.8 94.2 38.0 85.0 44.0 91.5 50.1 91.5 44.5 84.9 54.5 81.6 37.1 92.1
9 51.5 96.5 40.5 84.5 44.5 94.4 48.1 70.9 42.1 96.6 38.4 99.8 48.4 98.2
10 44.7 100.0 41.3 84.4 45.9 99.5 41.4 96.8 47.7 94.3 43.3 80.1 44.6 92.4
11 43.9 98.9 36.5 84.6 42.4 91.7 52.5 87.1 40.6 97.9 46.7 99.2 36.1 97.6
12 54.2 97.4 41.1 96.0 43.2 97.5 49.1 98.1 52.6 95.7 50.9 83.2 56.6 95.7
13 45.9 98.5 45.8 88.7 48.4 99.0 45.4 84.4 46.1 98.1
14 38.5 93.9 56.4 85.8 46.8 92.6 43.6 97.6 48.7 95.4
15 41.9 99.4 33.1 97.2 39.1 99.5 47.8 94.6 41.7 100.0
16 39.4 97.7 40.9 84.7 47.8 98.7 46.8 94.6 40.3 91.7
17 49.9 95.6 52.6 95.8 43.8 90.0 51.4 87.8 45.0 92.9
18 41.7 94.9 34.9 86.3 36.9 96.5 44.6 82.1 46.4 93.3
19 43.9 97.8 59.4 98.7 57.3 89.7 35.7 92.8 51.2 95.0
20 44.7 99.6 44.6 77.6 35.8 99.5 36.0 88.1 46.4 93.9
21 45.7 95.7 52.3 84.0 49.8 83.3 43.9 91.9 45.5 94.7
22 58.7 78.0 34.9 70.5 44.0 99.7 42.0 93.5 34.0 93.5
23 50.2 98.7 49.1 90.4 62.9 92.0 57.0 93.5 44.8 84.8
24 34.3 97.2 49.9 83.8 45.8 93.7 57.6 92.9 45.1 95.8
Mean 45.1 96.4 42.6 84.6 44.7 93.2 47.0 85.5 46.3 91.7 46.3 86.2 44.0 93.3
StdDev 7.3 4.3 8.2 7.7 6.8 6.6 4.6 8.1 6.7 5.3 5.6 8.4 5.6 5.0
StdErr 1.5 0.9 1.7 1.6 1.4 1.4 1.3 2.3 1.4 1.1 1.6 2.4 1.1 1.0

TABLE V: All coverage results involving the HSR, with one trial listed per row. Starting and ending coverage values are paired together. The last rows
report the corresponding column’s mean, standard deviation, and standard error of the mean. Naming conventions are consistent with those in Figure 9.

Trial Human Analytic Learned
1 35.9 94.9 42.1 80.9 48.6 90.4
2 32.9 56.6 42.5 76.9 58.6 89.3
3 38.4 92.1 31.3 69.8 48.2 99.2
4 40.2 95.6 45.6 67.3 48.8 77.9
5 52.6 96.8 46.2 59.4 60.1 99.1
6 42.5 99.8 48.8 92.0 39.7 72.8
7 38.7 95.4 30.2 89.5 41.7 98.5
8 31.5 88.9 29.2 72.9 32.5 72.7
9 32.4 88.8 36.4 88.0 52.8 99.3
10 58.7 97.4 34.2 95.8 54.8 95.7
11 59.8 97.0 50.5 82.2 31.9 90.3
12 33.7 99.9 44.9 95.4 27.1 84.6
13 50.9 93.3 33.4 45.8 29.8 90.6
14 50.6 97.0 52.4 100.0 50.4 97.8
15 43.5 99.2 43.3 91.6 31.6 78.5
16 49.5 97.9
17 51.5 92.7
18 49.9 79.2
19 43.2 99.1
Mean 42.8 92.8 40.7 80.5 44.8 89.8
StdDev 9.2 10.2 7.4 14.7 9.8 9.1
StdErr 2.4 2.6 1.9 3.8 2.2 2.1

TABLE VI: All coverage results involving the Fetch, with one trial listed
per row. Starting and ending coverage values are paired together. Naming
conventions are consistent with those in Figure 9.

C. All Coverage Results

All starting and final coverage values for the rollouts
involving the HSR and Fetch are shown in Tables V and VI,
respectively. These are the source of results for Figure 9.

We can also pool together results. For instance, combining
the human supervisor statistics for the Fetch and HSR
results in 95.01% coverage for human supervisors, whereas
combining the network policies on the white blanket results
in 91.67% coverage for learned policies.

To obtain coverage results, we first collected starting and
final images of the setup from a top-down webcam for each
rollout. Then, we had a human click on the boundary points
for the bed and then trace out the appropriate contours. All
images we used for coverage can be found on the project

website.5
To test for statistical significance among different experi-

mental conditions, we use a Mann-Whitney U test. We did
not use standard t-tests because our metric, coverage, is not
normally distributed.

For the HSR, the Mann-Whitney U test for the analytic
versus learned policies (for the white blanket) is p = 0.00034,
a strong indicator of statistical significance. The same test
for the learned policy versus a human results in a higher
value of p = 0.0889, suggesting that the learned policy’s
performance more closely matches the human supervisor
than the analytic baseline. Additional Mann-Whitney U tests
for the learned policy on white versus Cal, white versus teal,
and teal vs Cal blankets are p = 0.227, p = 0.844, and
0.327, respectively. These relatively high p-values mean we
cannot reject a hypothesis that the coverage samples in each
group are from the same distribution. All these comparisons
involved 24 rollouts in both categories. We did not run Mann-
Whitney U tests for the Fetch setups since the number of
data points is smaller.

5https://sites.google.com/view/bed-make

https://sites.google.com/view/bed-make
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